Управление данными

Лекция 6

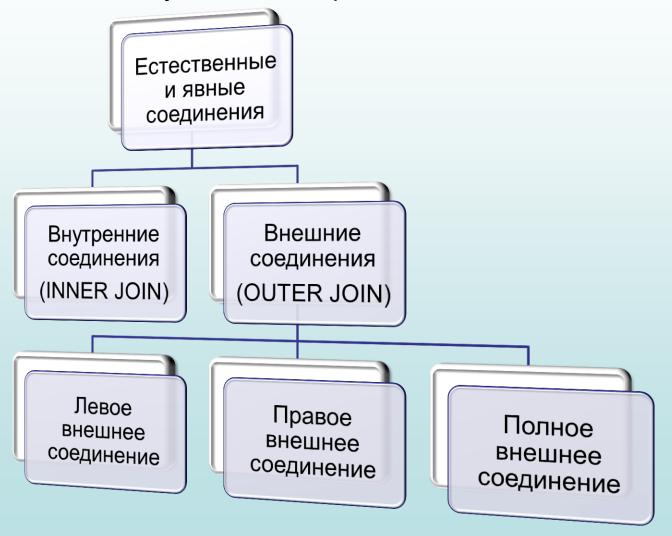
Операторы соединения и вложенные запросы

Свечников С.В.

Содержание занятия

- 01. Операторы соединения
- 02. Вложенные запросы
- 03. Коррелированные подзапросы

01. Операторы соединения


Специальные операторы соединения

B SQL определены специальные операторы, облегчающие выполнение некоторых распространенных операций соединения.

Естественные и явные соединения

Естественные и явные соединения в свою очередь могут быть разделены на следующие категории.

CROSS JOIN

Перекрестное соединение (CROSS JOIN) – это декартово произведение, в котором не выполняется никакого отбора на основе сравнения в соединяемых таблицах. Выводятся все комбинации строк.

Пример

SELECT a.pid, a.lname, a.fname, b.name FROM person a CROSS JOIN gruppa b;

NATURAL JOIN

Естественное соединение (NATURAL JOIN) – эквисоединение двух таблиц, выполняемое по столбцам с одинаковыми именами.

Пример

SELECT a.pid, a.lname, a.fname, b.name FROM person a NATURAL JOIN gruppa b;

Необходимо, чтобы в обеих таблицах были столбцы с одинаковыми названиями.

SPECIFIED JOIN

Явные соединения (SPECIFIED JOIN) — основываются на явно указанном в запросе условии.

Имеют 2 формы:
□ ON – использует для определения предикат
□ USING – эквисоединение по столбцам с одинаковыми именами

Примеры

SELECT p.pid, p.lname, p.fname, g.name FROM person p JOIN gruppa g
ON p.group_id= g.gid;

SELECT *
FROM person JOIN gruppa
USING (gid);

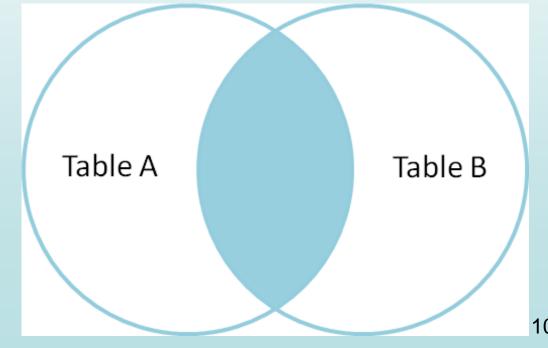
UNION JOIN

Объединяющие соединения (UNION JOIN) – отличаются от остальных соединений тем, что они не основаны на декартовом произведении и не используют предикаты.

Результатом объединяющего соединения будут строки одной таблицы дополненные столбцами другой таблицы с NULL-значениями.

Пример

SELECT p.pid, p.lname, p.fname, g.name FROM person p UNION JOIN gruppa g;

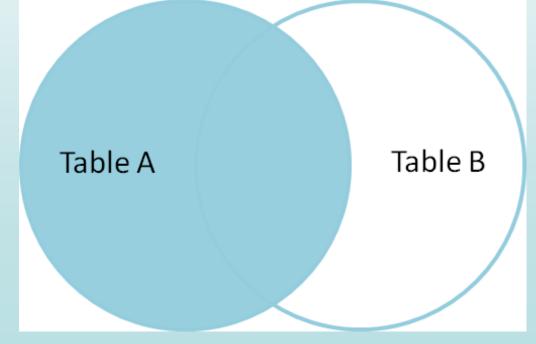

UNION JOIN в MySQL не поддерживается.

INNER JOIN

Внутреннее соединение (INNER JOIN) – соединение, исключающее несовпадающие строки. Другими словами, внутренне соединение – это любое соединение, не являющееся внешним. INNER подразумевается по умолчанию.

Пример

SELECT p.pid, p.lname, p.fname, g.name FROM person p INNER JOIN gruppa g ON p.group_id= g.gid;

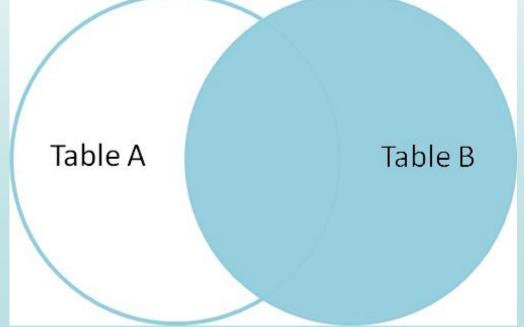

LEFT OUTER JOIN

Левое внешнее соединение (LEFT OUTER JOIN) содержит все строки из таблицы A, вместе с совпадающими значениями из таблицы B, в которых не было найдено совпадений. Для строк таблицы A, в которых не было найдено совпадений

Пример

SELECT p.pid, p.lname, p.fname, g.name FROM person p LEFT OUTER JOIN gruppa g

ON p.group_id= g.gid;



RIGHT OUTER JOIN

Правое внешнее соединение (RIGHT OUTER JOIN) является обратным по отношению к левому внешнему соединению. Все строки таблицы В будут дополнены совпадениями из таблицы А, а при отсутствии совпадений NULL-значениями.

Пример

SELECT p.pid, p.lname, p.fname, g.name FROM person p RIGHT OUTER JOIN gruppa g ON p.group_id= g.gid;

FULL OUTER JOIN

Полное внешнее соединение (FULL OUTER JOIN) является комбинацией левого и правого соединений. Оно показывает все строки обеих таблиц: при наличии совпадений — объединенные, а при их отсутствии — с NULL-значениями.

Пример

SELECT p.pid, p.lname, p.fname, g.name FROM person p FULL OUTER JOIN gruppa g ON p.group_id= g.gid;

B MySQL FULL OUTER JOIN не поддерживается.

FULL OUTER JOIN B MySQL

Для того чтобы представить предыдущий запрос в MySQL можно воспользоваться объединением двух запросов: левого и правого соединений.

Пример

SELECT p.pid, p.lname, p.fname, g.name FROM person p RIGHT OUTER JOIN gruppa g ON p.group_id= g.gid UNION

SELECT p.pid, p.lname, p.fname, g.name FROM person p LEFT OUTER JOIN gruppa g ON p.group_id= g.gid;

02. Вложенные запросы

Подзапросы

Запросы могут управлять другими запросами.

Для этого нужно поместить запрос внутри предиката другого запроса и использовать выходные данные внутреннего запроса в предикате внешнего.

SQL разрешает вкладывать запросы друг в друга.

Пример
SELECT * FROM person
WHERE group_id =
(SELECT gid FROM gruppa
WHERE name='ИТС-1-10');
BHEMHUЙ Запрос

Внешний запрос
(подзапрос)

Для осуществления внешнего запроса SQL сперва должен выполнить внутренний запрос.

Использование IN в подзапросах

Если подзапрос будет содержать несколько значений, то предыдущий пример не будет выполнен.

Пример

SELECT * FROM person
WHERE group_id =
(SELECT gid FROM gruppa
WHERE name like 'UT%');

Подзапрос выводит несколько значений

SELECT * FROM person
WHERE group_id IN
(SELECT gid FROM gruppa
WHERE name like 'UT%');

Применяем оператор IN

При использовании специального оператора IN можно формировать подзапросы, выводящие любое количество строк. В отличие от IN, операторы BETWEEN, LIKE и IS NULL не могут применяться с подзапросами.

Допустимые результаты подзапросов

Предикаты с подзапросами обычно применяют форму «скалярное выражение – оператор – подзапрос», но можно применять и другие формы.

Пример

```
Форма «подзапрос — оператор — скалярное выражение»: SELECT * FROM person WHERE (SELECT gid FROM gruppa WHERE name='ИТС-1-10') = group_id;
```

Использование агрегатов в подзапросах

Одним из типов функций, которые автоматически выдают единственное значение для любого количества строк являются агрегатные функции.

Пример

```
SELECT * FROM person
WHERE year <
(SELECT AVG(year) FROM person);</pre>
```

Если использовать GROUP BY с агрегатами, то функция выдаст несколько значений.

Количество столбцов в подзапросе

Для выполнения вложенных запросов подзапрос всегда должен выбирать единственный столбец.

Как следствие нельзя использовать следующий подзапрос, кроме случая, если таблица содержит только 1 столбец.

Пример

SELECT * FROM person
WHERE group_id =
(SELECT * FROM gruppa
WHERE name='UTC-1-10');

Не верно

Выражения в подзапросах

В предложении SELECT подзапроса можно указывать не только столбец, но и составные выражения.

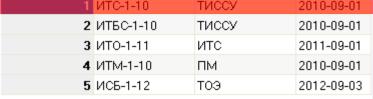
Примеры

```
SELECT * FROM person
WHERE year <
(SELECT AVG(year)-10 FROM person);

SELECT * FROM person
WHERE year <
(SELECT AVG(year) FROM person)-10;
```

03. Коррелированные подзапросы

Коррелированные подзапросы


При использовании подзапросов в SQL разрешается ссылаться из внутреннего запроса на таблицу в предложении FROM внешнего запроса. Таким образом, формируется коррелированный подзапрос.

Пример

SELECT *
FROM person vnesh
WHERE 1 IN
(SELECT gid FROM gruppa vnutr
WHERE vnesh.group_id= vnutr.gid);

Выполнение коррелированного подзапроса

	pid 📤 📗 Inam	ne fname	y	phone	mf	city	group_id
1.	1 Петр	ов Василий	45	9878376	муж	Москва	1
-	2 Иван	ов Дмитрий	17	2346899	муж	Самара	2
	3 Крыл	ова Ирина	18	5465556	жен	Ростов	1
	4 Жукоі	в Федор	34	4879830	муж	Самара	3
	5 Попо	в Вадим	67	3098475	муж	Тула	1
	6 Астах	ков Павел	29	<null></null>	муж	Тамбов	4
	7 Дрон	ов Артем	66	7321245	муж	Москва	1
	8 Козло	ова Нелли	12	<null></null>	жен	Тула	2
	9 Курки	іна Ольга	70	3746598	жен	Ростов	<null></null>
	10 Пончі	ик Игорь	22	1293845	муж	Москва	<null></null>
1 ИТС-1-10 ТИССУ	2010-09-01	2					
2 ИТБС-1-10 ТИССУ	2010-09-01						

- 1. Выбирается строка из таблицы во внешнем запросе.
- 2. Значения строки сохраняются в алиасе vnesh
- 3. Выполняется подзапрос, в котором есть совпадения vnesh.group_id= vnutr.gid и извлекается столбец gid.
- 4. gid сравнивается с предикатом внешнего запроса, т.е. значением «1».
- 5. Если значение gid совпадает, то оно выводится.
- 6. Процедура повторяется для следующей строки внешнего запроса.

Корреляция таблицы с собой

Коррелированные подзапросы могут быть основаны на той же таблице, что и основной запрос.

Пример

SELECT *
FROM person vnesh
WHERE year >
(SELECT AVG(year) FROM person vnutr
WHERE vnesh.city = vnutr.city
and vnesh.year > vnutr.year);

Вопросы

Домашнее задание

- □ Изучить главы 10 и 11 книги М.Грабера Введение в SQL
- Подготовиться к контрольной работе по лекции
- □ Выполнить лабораторную работу №2

Контроль

Для выполнения контрольного теста используем ссылку:

app.startexam.com/Center/Web/student

Короткая ссылка:

clck.ru/2Undm

Пароль на тест:

5915