

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский технологический университет»

МИРЭА

Институт Информационных технологий Кафедра ИППО

Дисциплина «Мультисервисные сети»

ОТЧЁТ

ПО ПРАКТИЧЕСКИМ ЗАНЯТИЯМ

(вариант 9)

Исполнитель Карих Д.С.

Группа ИСБОп-01-14

Зачтено «_14___» ____04______ 2017 г.

ЛИСТ МОНИТОРИНГА

отчёта по практическим занятиям по дисциплине «Мультисервисные сети»

Практические занятия

10.04.17

Задание №1 Зачтено

Задание №2 Неверно

Задание №3 Неверно

12.04.17

Задание №2 Зачтено

Задание №3 Неверно

14.04.17

Задание №3 Зачтено

К защите

Преподаватель

И.П. Дешко

Задание №1. Расчёт задержек сериализации в коммутируемом сегменте

Запр		Ответ, байт	Протоколы на А-УК	Протоколы на УК-С	
110	00	20000	UDP, IPv4, Ethernet 802.1p 10 M6/c	UDP, IPv4, Ethernet 802.1p 100 Mб/c	

0. Длины запроса и ответа

Оставшееся место в поле данных Ethernet: $l_{max} = 1500 - 20 - 8 = 1472$ байта

Запрос помещается в один кадр ($1100 < l_{max}$).

$$l_3 = 1100 + 26 + 4 + 20 + 8 = 1158$$
 байт

Ответ не помещается в один кадр ($20000 > l_{max}$). Разобьём его на 13 полных пакетов по l_{max} байт и 1 неполный пакет длиной 864 байта.

$$l_o = 13 \cdot l_{max} + 864 + 14 \cdot (26 + 4 + 20 + 8) + 13 \cdot 12 = 20968 \, \text{faŭm}$$

1. Задержка от А до УК

$$\Delta t_1 = \frac{l_3 \, \text{faŭm}}{10 \, \text{Mfum/c}} = \frac{8 \cdot 1158 \, \text{fum}}{10^7 \, \text{fum/c}} = 0.9264 \, \text{MC}$$

2. Задержка от УК до С

$$\Delta t_2 = \frac{\Delta t_1 \cdot 10 \, M \text{ fum/c}}{100 \, M \text{ fum/c}} = 0.09264 \, \text{mc}$$

3. Задержка от С до УК

$$\Delta t_3 = \frac{l_o \, \text{байm}}{100 \, \text{Mбиm/c}} = \frac{8 \cdot 20968 \, \text{бит}}{10^8 \, \text{бит/c}} = 1.677 \, \text{мс}$$

4. Задержка от УК до А

$$\Delta t_4 = \frac{\Delta t_3 \cdot 100 \, M \text{ fum/c}}{10 \, M \text{ fum/c}} = 16.77 \, \text{ mc}$$

Otbet:
$$\Delta t = \sum_{i=1}^{4} \Delta t_i = 19.47 \text{ mc}$$

Задание №2. Расчёт полосы пропускания для голосового трафика

Число телефонов	Кодек	Длительность сэмпла, мс
16	G.723.1 (24 байта/сэмпл)	30

- 1. Количество пакетов в секунду для каждого телефона: $n = \frac{1}{30 \cdot 10^{-3}} \approx 34$
- 2. Общая длина кадра: 24+12+8+20+26+4+12=106 байт.
- 3. Битрейт голосового потока:

 $106 \, \text{Ga\"um} \cdot 34 \, c^{-1} = 3604 \, \text{Ga\"um} / c = 28.83 \, \text{KGum} / c$.

4. 16 одновременных звонков потребуют полосу пропускания не менее $28.83\, K \text{бит/c} \cdot 16 = 461.28\, K \text{бит/c}$

Ответ: 461.28 Кбит/с .

Задание №3. Определить число одновременных голосовых вызовов между двумя удалёнными офисами

Полоса линии связи, Кбит/с	Утилизация линии, %	Сэмпл, мс	Протокол	Наличие VAD
256	50	30	RTP	+

- 1. Количество пакетов в секунду для каждого телефона: $n = \frac{1}{30 \cdot 10^{-3}} \approx 34$.
- 2. Объём голосового сэмпла: 30 байт.
- 3. Полный объём кадра: 30+12+8+20+2+2=74 байта.
- 4. Полоса, занимаемая одним вызовом: $\frac{74 \cdot 8 \cdot 34}{10^3} = 20.128 \, \text{Кбит/c}$
- 5. Число одновременных голосовых вызовов: $\frac{256 \cdot 0.5 \cdot 1.3}{20.128} \approx 8.27$

Ответ: максимальное число вызовов равно 8.