Лабораторная работа. Создание сети, состоящей из коммутатора и маршрутизатора

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
D1	G0/0	192.168.0.1	255.255.255.0	—
	G0/1	192.168.1.1	255.255.255.0	
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1
РС-В	NIC	192.168.0.3	255.255.255.0	192.168.0.1

Задачи

Часть 1. Настройка топологии и инициализация устройств

Часть 2. Настройка устройств и проверка подключения

Часть 3. Отображение сведений об устройстве

Общие сведения/сценарий

Это комплексная лабораторная работа, предназначенная для повторения рассмотренных ранее команд IOS. В этой лабораторной работе вы соедините оборудование кабелями в соответствии со схемой топологии. Затем вы настроите устройства согласно таблице адресации. После сохранения конфигурации вы проверите ее, выполнив тестирование сетевого подключения.

После настройки устройств и проверки сетевого подключения вы, воспользовавшись командами IOS, получите с этих устройств сведения, необходимые для подготовки ответов на вопросы о сетевом оборудовании.

Эта лабораторная работа содержит минимум инструкций по выполнению команд, необходимых для настройки маршрутизатора. Список требуемых команд приведен в Приложении А. Проверьте свои знания: настройте устройства, не пользуясь приложениями.

Примечание. В практических лабораторных работах ССNA используются маршрутизаторы с интегрированными сетевыми сервисами (ISR) Cisco 1941 с операционной системой Cisco IOS версии 15.2(4)M3 (образ universalk9). Также используются коммутаторы Cisco Catalyst 2960 с операционной системой Cisco IOS версии 15.0(2) (образ lanbasek9). Можно использовать другие маршрутизаторы, коммутаторы и версии Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и результаты их выполнения могут отличаться от тех, которые показаны в лабораторных работах. Точные идентификаторы интерфейсов см. в сводной таблице по интерфейсам маршрутизаторов В конце лабораторной работы.

Примечание. Убедитесь, что все настройки коммутатора и маршрутизатора удалены, и загрузочная конфигурация отсутствует. Процедуры инициализации и перезагрузки маршрутизатора и коммутатора описаны в Приложении Б.

Необходимые ресурсы

- 1 маршрутизатор (Cisco 1941 с операционной системой Cisco IOS 15.2(4)МЗ (универсальный образ) или аналогичная модель)
- 1 коммутатор (Cisco 2960 с ПО Cisco IOS версии 15.0(2) с образом lanbasek9 или аналогичная модель)
- 2 ПК (Windows 7 или 8 с программой эмуляции терминала, например, Tera Term)
- Консольные кабели для настройки устройств Cisco IOS через консольные порты
- Кабели Ethernet, расположенные в соответствии с топологией

Примечание. Интерфейсы Gigabit Ethernet на маршрутизаторах Cisco 1941 определяют скорость автоматически, поэтому для подключения маршрутизатора к PC-В можно использовать прямой кабель Ethernet. При использовании другой модели маршрутизатора Cisco может возникнуть необходимость использовать перекрестный кабель Ethernet.

Часть 1: Настройка топологии и инициализация устройств

Шаг 1: Создайте сеть согласно топологии.

- а. Подключите устройства, показанные в топологии, и кабели соответствующим образом.
- b. Включите все устройства в топологии.

Шаг 2: Выполните инициализацию и перезагрузку маршрутизатора и коммутатора.

Если на маршрутизаторе и коммутаторе имеются ранее сохраненные файлы конфигурации, выполните инициализацию и перезагрузите эти устройства, чтобы вернут их основные настройки. Инструкции по инициализации и перезагрузке этих устройств приводятся в Приложении Б.

Часть 2: Настройка устройств и проверка подключения

В части 2 вы настроите топологию сети и такие базовые параметры, как IP-адреса интерфейсов, доступ к устройствам и пароли. Имена устройств и адресные данные можно найти в разделах "Топология" и "Таблица адресации" в начале этой лабораторной работы.

Примечание. В Приложении А приведены сведения о конфигурации для выполнения шагов в части 2. Постарайтесь выполнить часть 2, не пользуясь этим приложением.

Шаг 1: Сделайте на интерфейсах ПК статические настройки ІР-адресации.

- а. Настройте на компьютере PC-A IP-адрес, маску подсети и параметры шлюза по умолчанию.
- b. Настройте на компьютере PC-B IP-адрес, маску подсети и параметры шлюза по умолчанию.
- с. Отправьте ping на РС-В из командной строки РС-А.

Почему проверка связи не удалась?

Шаг 2: Настройте маршрутизатор.

- а. Подключитесь к маршрутизатору с помощью консоли и активируйте привилегированный режим EXEC.
- b. Войдите в режим конфигурации.
- с. Назначьте маршрутизатору имя устройства.
- d. Отключите поиск DNS, чтобы предотвратить попытки маршрутизатора неверно преобразовывать введенные команды таким образом, как будто они являются именами узлов.
- е. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- f. Назначьте cisco в качестве пароля консоли и включите режим входа в систему по паролю.
- g. Назначьте cisco в качестве пароля виртуального терминала и включите вход по паролю.
- h. Зашифруйте открытые пароли.
- і. Создайте баннер с предупреждением о запрете несанкционированного доступа к устройству.
- ј. Настройте и активируйте на маршрутизаторе оба интерфейса.
- к. Для каждого интерфейса введите описание, указав, какое устройство к нему подключено.
- I. Сохраните файл текущей конфигурации в файл загрузочной конфигурации.
- m. Настройте на маршрутизаторе время.

Примечание. Вопросительный знак (?) позволяет открыть справку с правильной последовательностью параметров, необходимых для выполнения этой команды.

n. Протестируйте компьютер PC-B, отправив компьютеру PC-A эхо-запрос из окна командной строки.

Успешно ли выполнена проверка связи? Почему?

Часть 3: Отображение сведений об устройстве

В части 3 вы воспользуетесь командами **show** для получения данных с маршрутизатора и коммутатора.

Шаг 1: Соберите с сетевых устройств данные об аппаратном и программном обеспечении.

а. С помощью команды show version ответьте на следующие вопросы о маршрутизаторе.

Как называется образ IOS, под управлением которой работает маршрутизатор?

Каким объемом памяти DRAM обладает маршрутизатор?

Каким объемом памяти NVRAM обладает маршрутизатор?

Каким объемом флеш-памяти обладает маршрутизатор?

b. С помощью команды **show version** ответьте на следующие вопросы о коммутаторе. Как называется образ IOS, под управлением которой работает коммутатор?

Каким объемом динамического ОЗУ (DRAM) обладает коммутатор?

Каким объемом энергонезависимой памяти (NVRAM) обладает коммутатор?

Назовите номер модели коммутатора.

Шаг 2: Отобразите таблицу маршрутизации на маршрутизаторе.

Выполните команду **show ip route** на маршрутизаторе, чтобы ответить на следующие вопросы. Какой код используется в таблице маршрутизации для обозначения сети с прямым подключением?

Сколько записей маршрутов обозначены буквой «С» в таблице маршрутизации? _____ Какие типы интерфейсов связаны с маршрутами, закодированными с символом «С»?

Шаг 3: Выведите на маршрутизатор сведения об интерфейсе.

С помощью команды show interface g0/1 ответьте на следующие вопросы.

Укажите текущее состояние интерфейса G0/1.

Назовите MAC-адрес интерфейса G0/1.

Каким образом в этой команде отображается адрес в Интернете?

Шаг 4: Выведите на маршрутизатор и коммутатор сводный список интерфейсов.

Для проверки конфигурации интерфейса можно использовать несколько команд. Одна из наиболее удобных — команда **show ip interface brief**. Выходные данные команды содержат сводный список интерфейсов устройства с указанием статуса каждого интерфейса.

а. Введите команду show ip interface brief на маршрутизаторе.

R1# show ip interface brief

Interface	IP-Address	OK?	Method	Status		Protocol
Embedded-Service-Engine0/0	unassigned	YES	unset	administratively	down	down
GigabitEthernet0/0	192.168.0.1	YES	manual	up		up
GigabitEthernet0/1	192.168.1.1	YES	manual	up		up
Serial0/0/0	unassigned	YES	unset	administratively	down	down
Serial0/0/1	unassigned	YES	unset	administratively	down	down

R1:	#
-----	---

b. Введите команду show ip interface brief на коммутаторе.

Switcong Dida ip inderided Diite	Switch#	show	ip	interface	brief
----------------------------------	---------	------	----	-----------	-------

Interface	IP-Address	OK? Met	hod Status	Protocol
Vlan1	unassigned	YES man	ual up	up
FastEthernet0/1	unassigned	YES unse	et down	down
FastEthernet0/2	unassigned	YES unse	et down	down
FastEthernet0/3	unassigned	YES unse	et down	down
FastEthernet0/4	unassigned	YES unse	et down	down
FastEthernet0/5	unassigned	YES unse	et up	up
FastEthernet0/6	unassigned	YES unse	et up	up
FastEthernet0/7	unassigned	YES unse	et down	down
FastEthernet0/8	unassigned	YES unse	et down	down
FastEthernet0/9	unassigned	YES unse	et down	down
FastEthernet0/10	unassigned	YES unse	et down	down
FastEthernet0/11	unassigned	YES unse	et down	down
FastEthernet0/12	unassigned	YES unse	et down	down
FastEthernet0/13	unassigned	YES unse	et down	down
FastEthernet0/14	unassigned	YES unse	et down	down
FastEthernet0/15	unassigned	YES unse	et down	down
FastEthernet0/16	unassigned	YES unse	et down	down
FastEthernet0/17	unassigned	YES unse	et down	down
FastEthernet0/18	unassigned	YES unse	et down	down
FastEthernet0/19	unassigned	YES unse	et down	down
FastEthernet0/20	unassigned	YES unse	et down	down
FastEthernet0/21	unassigned	YES unse	et down	down
FastEthernet0/22	unassigned	YES unse	et down	down
FastEthernet0/23	unassigned	YES unse	et down	down
FastEthernet0/24	unassigned	YES unse	et down	down
GigabitEthernet0/1	unassigned	YES unse	et down	down
GigabitEthernet0/2	unassigned	YES unse	et down	down
Switch#				

Вопросы для повторения

- 1. Если интерфейс G0/1 выключен администратором, какая команда конфигурации интерфейса позволит его включить?
- 2. Что произойдет в случае неправильной конфигурации интерфейса G0/1 на маршрутизаторе с IPадресом 192.168.1.2?

Сводная таблица по интерфейсам маршрутизаторов							
Модель маршрутизатора	Интерфейс Ethernet № 1	Интерфейс Ethernet № 2	Последовательный интерфейс № 1	Последовательный интерфейс № 2			
1 800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)			
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			

Сводная таблица по интерфейсам маршрутизаторов

Примечание. Чтобы узнать, как настроен маршрутизатор, посмотрите на интерфейсы и определите тип маршрутизатора и количество имеющихся у него интерфейсов. Перечислить все комбинации конфигураций для каждого класса маршрутизаторов невозможно. Эта таблица содержит идентификаторы для возможных комбинаций интерфейсов Ethernet и последовательных интерфейсов на устройстве. Другие типы интерфейсов в таблице не представлены, хотя они могут присутствовать в данном конкретном маршрутизаторе. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это официальное сокращение, которое можно использовать в командах Cisco IOS для обозначения интерфейса.