Информация о семестре

Преподаватель Роман Игоревич

Литература

- 1. В.М. Вержбицкий «Численные методы» (ЧМ)
- 2. Е.А. Волков «Численные методы»
- 3. А.А. Самарский «Численные методы»
- 4. А.П. Колесников «Численный анализ»
- 5. Н.С. Бахвалов
- 6. А.Б. Самохин «Численные методы»

Лекция 1 (06.09.16)

Множества чисел

- 1. \mathbb{N} множество натуральных чисел
- 2. \mathbb{Z} множество целых чисел (включает \mathbb{N})
- 3. \mathbb{Q} множество рациональных чисел (включает \mathbb{Z})
- 4. \mathbb{R} множество действительных чисел (включает \mathbb{Q})
- 5. \mathbb{D} множество комплексных чисел (включает $\mathbb{R})$

Блок-схема решения прикладной задачи с численными методами

Методы решения

- 1. Аналитический: результат формула
- 2. Численный: предполагает определенный уровень дискретности
- 3. Асимптотический: в решении присутствует некоторый малый параметр, изменение которого позволяет осуществить **предельный переход**.

Классификация погрешностей результатов численного решения задач

- 1. Неустранимая: неадекватность математической модели
- 2. Методическая: применение того или иного математического метода для создания математической модели
- 3. Вычислительная: округление чисел

Дано

- 1. Стержень длиной l и сечением S
- 2. Температуры на концах стержня равны нулю: T(0,0) = 0, T(0,l) = 0
- 3. Через стержень протекает электрический ток, приводя к его нагреву

Найти зависимость температуры от времени

Решение

$$(kT')' = f(x)$$

k — коэффициент теплопроводности

T — температура

$$S = const \Rightarrow k = const$$

$$T'' = \frac{f(x)}{k}$$

$$T' = \frac{1}{k} \int_0^x f(t)dt + C$$

$$T = \int_0^t (\int_0^y \frac{f(t)}{k} dt + C) dy + C_1$$

$$x = 0, T(0) = C_1, C_1 = 0$$

$$\int_0^l \left(\int_0^y \frac{f(t)}{k} dt + C \right) dy = 0$$

$$\int_0^l \int_0^y \frac{f(t)}{k} dt dy + C \int_0^l dy = 0$$

$$C = -\frac{1}{l} \int_0^l \int_0^y \frac{f(t)}{k} dt dy$$

Семинар 1 (12.09.16)

Преподаватель Марина Алексеевна

А. Найти абсолютную и относительную ошибки, где a_1, a_2, a_3 — приближенные величины, данные с погрешностями $\Delta_1, \Delta_2, \Delta_3$.

Пример 1
$$\frac{a_1 \operatorname{tg}(a_2^{\alpha})}{(a_1^{\beta} + a_2) \ln(a_3)}, \, \alpha = \frac{1}{3}, \, \beta = 3$$

$$\frac{\partial f}{\partial a_1} = \frac{(a_1^{\beta} + a_2) \ln(a_3) \operatorname{tg}(a_2^{\alpha})}{(a_1^{\beta} + a_2)^2 \ln^2(a_3)} - \frac{a_1 \operatorname{tg}(a_2^{\alpha}) \ln(a_3) \beta a_1^{\beta - 1}}{(a_1^{\beta} + a_2)^2 \ln^2(a_3)} =$$

$$= \frac{\operatorname{tg}(a_2^{\alpha})}{(a_1^{\beta} + a_2) \ln(a_3)} - \beta a_1^{\beta} \frac{\operatorname{tg}(a_2^{\alpha})}{\ln(a_3)(a_1^{\beta} + a_2)^2}$$

$$\frac{\partial f}{\partial a_2} = \frac{(a_1^{\beta} + a_2) \ln(a_3) a_1 \frac{\alpha a_2^{\alpha - 1}}{\cos^2(a_2^{\alpha})}}{(a_1^{\beta} + a_2)^2 \ln^2(a_3)} - \frac{a_1 \operatorname{tg}(a_2^{\alpha}) \ln(a_3)}{(a_1^{\beta} + a_2)^2 \ln^2(a_3)} =$$

$$= a_1 \frac{1 + \operatorname{tg}^2(a_2^{\alpha})}{a_2^{1 - \alpha}(a_1^{\beta} + a_2) \ln(a_3)} - a_1 \frac{\operatorname{tg}(a_2^{\alpha})}{(a_1^{\beta} + a_2)^2 \ln(a_3)}$$

$$\frac{\partial f}{\partial a_3} = \frac{(a_1^{\beta} + a_2) \ln(a_3) \cdot 0}{(a_1^{\beta} + a_2) \ln^2(a_3)} - \frac{a_1 \operatorname{tg}(a_2^{\alpha})(a_1^{\beta} \frac{1}{a_3} + \frac{a_2}{a_3})}{(a_1^{\beta} + a_2)^2 \ln^2(a_3)} = -a_1 \frac{\operatorname{tg}(a_2^{\alpha})}{(a_1^{\beta} + a_2) \ln^2(a_3) a_3}$$

$$\Delta f = \left| \frac{tg(a_2^{\alpha})}{(a_1^{\beta} + a_2)\ln(a_3)} - \beta a_1^{\beta} \frac{tg(a_2^{\alpha})}{\ln(a_3)(a_1^{\beta} + a_2)^2} \right| \cdot \Delta_1 +$$

$$+ \left| a_1 \alpha \frac{(1 + tg^2(a_2^{\alpha}))}{a_2^{1-\alpha}(a_1^{\beta} + a_2)\ln(a_3)} - a_1 \frac{tg(a_2^{\alpha})}{(a_1^{\beta} + a_2)^2\ln(a_3)} \right| \cdot \Delta_2 +$$

$$+ \left| -a_1 \frac{tg(a_2^{\alpha})}{(a_1^{\beta} + a_2)\ln^2(a_3)a_3} \right| \cdot \Delta_3$$

Пример 2
$$\frac{a_3(a_1^{\alpha}+e^{a_2})}{\arctan(a_1a_2^{\beta})}, \ \alpha = \frac{1}{5}, \ \beta = 4$$

$$\frac{\partial f}{\partial a_3} = \frac{(a_1^{\alpha}+e^{a_2})}{\arctan(a_1a_2^{\beta})}$$

$$\frac{\partial f}{\partial a_1} = \frac{(a_3\alpha a_1^{\alpha-1})\arctan(a_1a_2^{\beta})}{\arctan(a_2^{\alpha})} - \frac{a_3(a_1^{\alpha}+e^{a_2})\frac{a_2^{\beta}}{1+(a_1a_2^{\beta})^2}}{\arctan(a_1^{\alpha})} =$$

$$= \frac{a_3\alpha a_1^{\alpha-1}}{\arctan(a_1a_2^{\beta})} - \frac{a_3(a_1^{\alpha}+e^{a_2})\frac{a_2^{\beta}}{1+(a_1a_2^{\beta})^2}}{\arctan(a_1^{\alpha})} = \frac{a_2}{1+a_1^2a_2^{2\beta}}$$

$$\frac{\partial f}{\partial a_2} = \frac{a_3e^{a_2}\arctan(a_1a_2^{\beta})}{\arctan(a_2^{\alpha})} - \frac{a_3(a_1^{\alpha}+e^{a_2})\frac{a_1a_2^{\beta-1}\beta}{1+a_1a_2^{\beta}}}{\arctan(a_1a_2^{\beta})}$$

$$\frac{\partial f}{\partial a_2} = \frac{a_3e^{a_2}\arctan(a_1a_2^{\beta})}{\arctan(a_1a_2^{\beta})} - \frac{a_3(a_1^{\alpha}+e^{a_2})\frac{a_1a_2^{\beta-1}\beta}{1+a_1a_2^{\beta}}}{\arctan(a_1a_2^{\beta})}$$

Пример 3
$$\frac{a_1 a_2^{\alpha}}{(a_1^{\beta} + a_2)a_3}, \, \alpha = \frac{1}{5}, \, \beta = 3$$

$$\frac{\partial f}{\partial a_1} = \frac{a_2^{\alpha} (a_1^{\beta} + a_2)a_3 - a_1 a_2^{\alpha} (a_3^{\beta} a_1^{\beta - 1})}{((a_1^{\beta} + a_2)a_3)^2}$$

$$\frac{\partial f}{\partial a_2} = \frac{\alpha a_1 a_1^{\alpha - 1} (a^{\beta} + a_2)a_3 - a_1 a_2^{\alpha} a_3}{((a_1^{\beta} - a_2)a_3)^2}$$

$$\frac{\partial f}{\partial a_3} = -\frac{a_1 a_2^{\alpha}}{(a_1^{\beta} + a_2)a_3^2}$$

• • •

Б. Дано приближенное число и его погрешность. Найти количество верных знаков.

Пример 1 3457, 0,6

- 1. $10^3 \Rightarrow m = 3$
- 2. $a = a_m \cdot 10^3 + a_{m-1} \cdot 10^2 + \dots + a_{m-n+1} \cdot 10^{m-n+1}$
- 3. m величина старшего разряда
- $4. \ n$ текущий номер знака, отсчитываемый слева направо
- 5. Говорят, что k первых знаков приближенного числа **верные**, если абсолютная погрешность $|Aa| \leq \Delta a \leq 0.5 \cdot 10^{m-k+1}$, т.е. меньше половины соответствующего разряда.
- 6. Подбирается минимальное число вида $0.5 \cdot 10^l > \Delta a$ и сравниваются разряды.
- 7. A точное значение величины (неизвестно)
- 8. a приближенное значение величины (известно)
- 9. $0.6 < 0.5 \cdot 10^k$; $k_{min} = 1$
- 10. $m-n+1=k_{min}$; n=3

Ответ: первые 3 знака верны

Пример 2 17.69; 0.07

- 1. $17.69 = 1 \cdot 10^1 + 7 \cdot 10^0 + 6 \cdot 10^{-1} + 9 \cdot 10^{-2}$; m = 1
- 2. $0.07 < 0.5 \cdot 10^k$; $k_{min} = 0$
- 3. m-n+1=0; n=m+1=2

Ответ: первые 2 знака верны

Пример 3 6543; 2

1.
$$6543 = 6 \cdot 10^3 + 5 \cdot 10^2 + 4 \cdot 10^1 + 3 \cdot 10^0$$
; $m = 3$

2.
$$2 < 0.5 \cdot 10^k$$
; $k_{min} = 1$

3.
$$m-n+1=1$$
; $n=3$

Ответ: первые 3 знака верны

Пример 4 11.23; 0.006

1.
$$11.23 = 1 \cdot 10^1 + 1 \cdot 10^0 + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}$$
; $m = 1$

2.
$$0.006 < 0.5 \cdot 10^k$$
; $k_{min} = -1$

3.
$$m-n+1=-1$$
; $n=3$

Ответ: первые 3 знака верны

В. Дана геометрическая фигура. Определить в трехмерном случае объем и полную поверхность, плоском случае — площадь и периметр. Погрешность = 1 см

Пример 1 Дана равнобедренная трапеция со сторонами основания a=42см и b=18см и высотой h=5см.

1.
$$l = \sqrt{h^2 + (\frac{(a-b)}{2})^2} = \sqrt{144 + 25} = 13$$
cm

2.
$$S = m \cdot h = \frac{1}{2}(a+b) \cdot h = \frac{1}{2}ah + \frac{1}{2}bh = \frac{1}{2} \cdot 60 \cdot 5 = 150$$

(a)
$$\frac{\partial S}{\partial a} = \frac{1}{2}h \cdot \Delta a = \frac{5}{2}$$

(b)
$$\frac{\partial S}{\partial b} = \frac{1}{2}h \cdot \Delta b = \frac{5}{2}$$

(c)
$$\frac{\partial S}{\partial h} = \frac{1}{2}(a+b)\Delta h = 30$$

(d)
$$\Delta S = \frac{\partial S}{\partial a} + \frac{\partial S}{\partial b} + \frac{\partial S}{\partial h} = 25$$

(e)
$$\delta S = \frac{\Delta S}{|S|} = \frac{35}{150} = \frac{7}{30} = 0.833$$

3.
$$P = 2l + b + a = 26 + 60 = 86$$

(a)
$$P = 2\sqrt{h^2 + (\frac{(a-b)}{2})^2} + b + a$$

(b)
$$\frac{\partial P}{\partial h} = \frac{2 \cdot 2 \cdot h}{2\sqrt{h^2 + (\frac{a-b}{2})^2}} \Delta h = \frac{10}{13}$$

(c)
$$\frac{\partial P}{\partial a} = \frac{2}{2\sqrt{h^2 + (\frac{a-b}{2})^2}} \frac{2(a-b)}{4} \Delta a + \Delta a = \frac{24}{26} + 1 = \frac{25}{13}$$

(d)
$$\frac{\partial P}{\partial b} = \frac{2}{2\sqrt{h^2 + (-\frac{a-b}{4})}} \frac{2(a-b)(-1)}{4} \Delta b + \Delta b = 1 - \frac{24}{26} = \frac{1}{13}$$

(e)
$$\Delta P = \frac{\partial P}{\partial h} + \frac{\partial P}{\partial a} + \frac{\partial P}{\partial b} = \frac{10}{13} + 2 = \frac{36}{13} = 2.169$$

(f)
$$\delta P = \frac{\Delta P}{|P|} = \frac{36}{13.86} = 0.0322$$

Пример 2 Дан прямоугольный параллелепипед с высотой h = 15см, стороной основания a = 40см и диагональю основания d = 50см. Определить объем и полную поверхность параллелепипеда.

1.
$$V = a \cdot b \cdot h = a \cdot \sqrt{d^2 \cdot a^2} \cdot h = ah\sqrt{d^2 - a^2}$$

(a)
$$\frac{\partial V}{\partial a} = (h \cdot \sqrt{d^2 - a^2} + ah \frac{-2a}{2\sqrt{d^2 - a^2}})\Delta a = 15 \cdot 30 - \frac{1600 \cdot 15}{30} = 450 - 800 = -350$$

(b)
$$\frac{\partial V}{\partial d} = (ah \frac{2d}{\sqrt{d^2 - a^2}}) \Delta d = \frac{ahd}{\sqrt{d^2 - a^2}} \Delta d = \frac{ahd}{\sqrt{d^2 - a^2}} \Delta d = \frac{40 \cdot 15 \cdot 50}{30} = 1000$$

(c)
$$\frac{\partial V}{\partial h} = (a\sqrt{d^2 - a^2})\Delta h = 40 \cdot 30 = 1200$$

(d)
$$\Delta V = \frac{\partial V}{\partial a} + \frac{\partial V}{\partial d} + \frac{\partial V}{\partial b} = 2200 - 350 = 1850$$

(e)
$$\delta V = \frac{\Delta V}{|V|} = \frac{1850}{18000} = 0.1027$$

2.
$$S = 2(a \cdot b + b \cdot h + h \cdot a) = 2(40 \cdot 30 + 30 \cdot 15 + 15 \cdot 40) = 4500$$

(a)
$$S = 2(a\sqrt{d^2 - a^2} + h\sqrt{d^2 - a^2} - ha)$$

(b)
$$\frac{\partial S}{\partial a} = 2(\frac{-2a^2}{2\sqrt{d^2 - a^2}} + 2\sqrt{d^2 - a^2} - \frac{2ah}{2\sqrt{d^2 - a^2}} + h)\Delta a =$$

= $2(-\frac{a^2}{\sqrt{d^2 - a^2}} + \sqrt{d^2 - a^2} - \frac{ah}{\sqrt{d^2 - a^2}} + h)\Delta a = -56.666$

(c)
$$\frac{\partial S}{\partial d} = 183.33$$

(d)
$$\frac{\partial S}{\partial h} = 140$$

(e)
$$\Delta S = 266.66$$

(f)
$$\partial S = \frac{\Delta S}{|S|} = \frac{266.66}{4500} = 0.059$$

Лекция 2 (13.09.16)

Преподаватель: Виктор Викторович Чердынцев

1 Вычислительная математика

— раздел математики, развивающий численные методы решения задач.

Любые приближенные методы вычислений дают некоторую погрешность (ошибку):

- 1. Систематические ошибки ошибка математической модели
- 2. Статистические ошибки
 - (а) Погрешность округления
 - (b) Приближенный характер начальных данных

1.1 Абсолютная и относительная погрешность

Пусть

- 1. A неизвестное **точное значение**
- 2. а известное приближенное значение

Тогда Предельная относительная погрешность — минимальное значение величины Δa , удовлетворяющее условию $\Delta a \geq |A-a| \Longrightarrow a - \Delta a \leq A \leq a + \Delta a$.

Определение a и Δa рассматривается в математической статистике. На практике, если имеется n испытаний a_i , то $a=\frac{1}{n}\sum_{i=1}^n a_i,\ \Delta a=\frac{1}{n}\sum_{i=1}^n |a_i-a|.$ В этом случае Δa определяется с определенной вероятностью $P(\Delta a \geq |A-a|) \geq n,$ 0 < P < 1.

Для оценки качества измерения вводится относительня погрешность $\delta_a \approx \frac{\Delta a}{|a|}$.

Знание a и Δa позволяет записать A в символическом виде $A=a\pm \Delta a$ или $A=a(1\pm \delta a).$

1.2 Количество верных знаков приближенного числа

Запишем a в виде $a=\alpha_m\cdot 10^m+\alpha_{m-1}\cdot 10^{m-1}+\ldots+\alpha_{m-n+1}\cdot 10^{m-n+1},$ где

- 1. $0 \le \alpha_i \le 9$
- 2. т величина разряда
- $3. \, n$ порядковый номер цифры в числе относительно старшего разряда

Количество верхных знаков определяется из условия $\Delta a \leq 0.5 \cdot 10^{m-n+1}$, т.е. как половина единицы разряда, при котором это условие выполняется.

Пример 1

Пусть

1.
$$a = 6357.6$$

2.
$$\Delta a = 0.7$$

Тогда

1.
$$m = 3$$

2.
$$0.7 < 0.5 \cdot 10^{3-n+1}$$

n=3 — количество верных знаков

1.3 Погрешность функции

Пусть $f(a_1, a_2, ..., a_n)$, где погрешность $a_i - \Delta_i$

Тогда

$$|f(a_1 \pm \Delta_1, a_2 \pm \Delta_2, ..., a_n \pm \Delta_n) - f(a_1, a_2, ..., a_n)| =$$

Разложим в многомерный ряд Тейлора и ограничим линейными членами:

$$= |f(a_1, ..., a_n) \pm \frac{\partial f}{\partial a_1} \Delta_1 \pm ... \pm \frac{\partial f}{\partial a_n} \Delta_n - f(a_1, ..., a_n)| \le |\frac{\partial f}{\partial a_1}| \Delta_1 + ... + |\frac{\partial f}{\partial a_n}| \Delta_n$$
$$\Delta_i \ll |a_i|$$

Погрешность простейших функций 2-х переменных

1.
$$f(a_1, a_2) = a_1 + a_2, \Delta_1, \Delta_2$$
$$|\frac{\partial f}{\partial a_1}| = 1; |\frac{\partial f}{\partial a_2}| = 1$$
$$\Delta_f = \Delta_1 + \Delta_2$$
$$\delta_f = \frac{\Delta_1 + \Delta_2}{|a_1 + a_2|}$$

2.
$$f(a_1, a_2) = a_1 \cdot a_2$$

 $|\frac{\partial f}{\partial a_1}| = |a_2|; |\frac{\partial f}{\partial a_2}| = |a_1|$
 $\Delta_f = |a_2|\Delta_1 + |a_1|\Delta_2$
 $\delta_f = \frac{|a_2|\Delta_1 + |a_1|\Delta_2}{|a_1a_2|} = \frac{\Delta_1}{|a_1|} + \frac{\Delta_2}{|a_2|}$

3.
$$f(a_1, a_2) = \frac{a_1}{a_2}$$

 $\left|\frac{\partial f}{\partial a_1}\right| = \left|\frac{1}{a_2}\right|; \left|\frac{\partial f}{\partial a_2}\right| = \left|\frac{a_1}{a_2^2}\right|$

$$\Delta_f = \frac{\frac{1}{|a_2|}\Delta_1 + \left|\frac{a_1}{a_2^2}\right|\Delta_2}{\left|\frac{a_1}{a_2}\right|} = \frac{\Delta_1}{|a_1|} + \frac{\Delta_2}{|a_2|} = \delta_1 + \delta_2$$

4.
$$f = a^v$$

$$\Delta_f = |v||a^{v-1}|\Delta_v$$

$$\delta_f = |v|\delta_a$$

1.4 Погрешность вычисления сторон прямоугольного треугольника

Пример 1

Дано
$$a = 30$$
см, $b = 40$ см, $\Delta = 1$ см

Найти c, Δ_c

Решение
$$c=\sqrt{a^2+b^2}=50{
m cm}$$
 $\Delta_c=|\frac{\partial c}{\partial b}|\Delta+|\frac{\partial c}{\partial a}|\Delta=\frac{a}{c}\Delta+\frac{b}{c}\Delta=1.4{
m cm}$

Пример 2

Дано
$$c = 50$$
см, $a = 30$ см

Найти b, Δ_b

Решение
$$b=\sqrt{c^2-a^2}$$
 $\Delta_b=|\frac{\partial b}{\partial c}|\Delta+|\frac{\partial b}{\partial a}|\Delta=|\frac{c}{b}|\Delta+|-\frac{a}{b}|\Delta=\frac{50}{40}+\frac{30}{40}=2$ см

1.5 Интерполяционые полиномы

Таблица узлов:

N	0	1	 n
X	x_0	x_1	 x_n
У	y_0	x_2	 y_n

Необходимо найти приближенное поведение функции между узлами.

Обычно рассматривается приближенная функция в виде суммы элементарных функций с неизвестными коэффициентами.

$$P_n \approx \sum_{i=0}^n a_i \varphi_i(x) = \begin{cases} sgn(ix) \\ x^i \end{cases}$$

 a_i находится из **критерия интерполяции**, который гласит, что при приближении функция должна проходить через узлы $P(x_i) \equiv y_i$.

Рассмотрим полиномиальное приближение $P_n(x) = a_0 + a_1 x + ... + a_i x^n$. Полином степени n однозначно определяется своими значениями в n+1 точке.

 $\sum_{i=0}^{n} a_i x_k^i = y_k, \ 0 \le k \le n$ — система линейных уравнений относительно a_i . Её решение требует $\sim n^3$ операций. Рассмотрим методы, позволяющие избежать непосредственного решения системы.

1.5.1 Интерполяционный полином Лагранжа

Идея этого метода состоит в представлении $P_n(x)$ в виде $y_0L_0+y_1L_1+...+y_nL_n$, где

- 1. y_i ординаты узлов
- 2. L_i полиномы степени n, не содержащие значения ординат узлов y_i и обладающие свойствами
 - (a) $L_i(x_i) = 1$
 - (b) $L_i(x_i) = 0$
 - (c) $i \neq j$
 - (d) количество узлов = n + 1
 - (e) ..., t.e. $L_i(x) = \frac{(x-x_0)(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{N_i}$
 - і. N_i значение числителя при $x = x_i$

T.O.
$$P_n(x) = \sum_{i=0}^n y_i \prod_{j=0}^n \frac{x - x_j}{x_i - x_j}$$

Отклонение приближающего полинома от f(x): $|f(x) - P_n(x)| \leq \frac{M_{n+1}}{(n+1)!}|(x-x_0)(x-x_1)...(x-x_n)|$

$$M_{n+1} = \max |f^{(n+1)}(x)|$$

В этом выражении можно минимизировать только полином степени n+1.

Известно, что полином Чебышева $T_n(t) = \arccos(n\cos t)$ имеет наименьшее отклонение от абсцисс на [-1,1].

Корни полинома T_i

$$(n+1)\cos t = \frac{\pi}{2}R + \pi k$$
$$\cos t = \frac{1+2k}{n+1}\pi$$
$$t_k = \arccos(\frac{1+2k}{2(n+1)})$$

Если узлы расположены на [-1,2] таким образом, то отклонение будет минимальным.

Для произвольного отрезка [a,b] применим линейное преобразование, имеющее вид полинома Лагранжа. $x=\frac{a+b}{2}+\frac{b-a}{2}t$

Если расположить узлы по Чебышевскому закону $x_k = \frac{a+b}{2} + \frac{b-a}{2} t_k$, то $|(x-x_0)...(x-x_n)| = (\frac{b-a}{2})^{n+1} \cdot |(t-t_0)...(t-t_n)|$, т.е. минимальное отклонение от приближаемой функции.

1.5.2 Первый интерполяционный полином Ньютона

Рассмотрим равномерное распределение узлов $x_i = x_0 + ih$, где $x_0 = a$; $h = \frac{b-a}{n}$. $P_n(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ... + a_n(x-x_0)(x-x_1)...(x-x_{n-1})$ Добавление нового узла приводит к добавлению к $P_n(x)$ нового слагаемого, а остальная структура не меняется.

Для определения a_i введем понятие **конечной разности**: $\Delta y(x) = y(x+h) - y(x)$ — конечная разность первого порядка, $\Delta^2 y(x) = \Delta y(x+h) - \Delta y(x) = y(x+2h) - 2y(x+h) + y(x)$ — конечная разность второго порядка. Конечные разности высших порядков определяются реккурентной формулой $\Delta^{(k+1)}y(x) = \Delta^k y(x+h) - \Delta^k y(x)$.

Перепишем полином в ином виде $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_0 - h) + ... + a_n(x - x_0)(x - x_0 - h)...(x - x_0 - (n - 1)h)$. Обозначим $x - x_0 = \tilde{x}$ и рассмотрим конечную разность выражения $\tilde{x}^{[n]} = \tilde{x}(\tilde{x} - h)...(x - (n - 1)h) -$ обобщенное произведение. $\Delta \tilde{x}^{[n]} = nh\tilde{x}^{[n-1]}$ и т.о. $\Delta^k \tilde{x}^{[n]} = n(n - 1)...(n - k + 1)h^k \cdot \tilde{x}^{n-h+1}$.

$$a_n = \frac{\Delta^n y_0}{n!h^n}$$

$$P_n(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n y_0}{n!h^n}(x - x_0)\dots(x - x_{n-1})$$

1.5.3 Второй интерполяционный полином Ньютона

Последовательное добавление узлов к правой границе уточняет поведение приближающей функции вблизи x_n .

$$P_n(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) + \dots + a_n(x - x_1) \dots (x - x_n)$$

$$a_n = \frac{\Delta^k y_{n-k}}{n!h^k}$$

$$P_n(x) = y_n + \frac{\Delta y_{n-1}}{h}(x - x_n) + \frac{\Delta^2 y_{n-2}}{2!h^2}(x - x_{n-1})(x - x_n) + \dots + \frac{\Delta^n y_0}{n!h^n}(x - x_1)(x - x_2)\dots(x - x_n)$$

Для минимизации полинома Ньютона используются таблицы конечных разностей:

n	y	Δy	$\Delta^2 y$	$\Delta^3 y$
0	y_0	Δy_0	$\Delta^2 y_0$	
1	y_1	Δy_1	$\Delta^2 y_1$	
2				

Первый ряд даёт коэффициенты первого полинома Ньютона Побочная диагональ даёт коэффициенты второго полинома Ньютона

1.6 Интерполяция сплайнами

Сплайн — приближающая функция на [a,b], являющаяся на численных отрезках $[x_{i-1},x_i]$ полиномом небольшой степени $n\leq 3$, а на всём отрезке [a,b] обладает непрерывными производными. Использование сплайнов позволяет избежать сильного отклонения полиномов между узлами с ростом степени.

Сплайн: $S^{n,k}$, где k — дефект, а n-k — количество непрерывных производных

Сплайн первого порядка:
$$S^{1,1}(x)$$
, $S_i(x) = y_{i-1} \frac{x-x_i}{x_{i-1}-x_i} + y_i \frac{x-x_{i-1}}{x_i-x_{i-1}}$
Сплайн третьего порядка: $S^{3,2}(x)$ на $[x_{i-1},x_i]$, $S_i(x) = a_i + b_i(x-x_{i-1}) + c_i(x-x_{i-1})^2 + d_i(x-x_{i-1})^3$.

Для определения коэффициентов используется:

- 1. Непрерывность S_i в узлах $S_i(x_i) = S_{i-1}(x_i)$ $a_i \equiv y_{i-1}$
- 2. Непрерывность первой производной $S_i'=b_i+2c_i(x-x_{i-1})+3d_i(x-x_{i-1})^2,$ $S_i(x_i)=S_{i-1}(x_i)$ $b_i=b_{i-1}+2c_ih_i+3d_ih_i^2$ $h_i=x_i-x_{i-1}$
- 3. Непрерывность второй производной $S_i''(x) = 2c_1 + 6d_i(x x_{i-1}), S_{i+1}'' = S_i''(x_i)$ $c_{i+1} = c_i + 3d_ih_i$
- 4. Недостающие два соотношения обычно получают с помощью $c_1=0,$ $c_n=n$ $b_i=\frac{h_i}{3}c_{i+1}=\frac{2}{3}h_ic_0+\frac{\Delta_{i-1}}{h_i}$

Семинар 2 (26.09.16)

Интерполяция (интерполирование)

— процесс построения интерполяционной функции, или процесс нахождения промежуточных значений табличных функций.

Постановка задачи интерполирования

Пусть функция y = f(x) задана таблицей $y_n = f(x_n)$.

Тогда задача интерполирования ставится обычно в следующей форме: найти многочлен $P(x) = P_n(x)$ степени не выше n, значение которого в точках x_i (i = 0, 1, 2, ..., n) совпадает со значениями данной функции, т.е. $P(x_i) = y_i$.

Геометрически это означает, что нужно найти алгебраическую кривую вида $y=a_0x_n+a_1x^{n-1}+...+a_n$, проходящую через заданную систему точек $M_i(x_iy_i)$ (i=0,1,2,...,n).

Многочлен P(x) называется **интерполяционным многочленом**. Точки x_i (i=0,1,2,...,n) называются **узлами интерполяции**. В указанной постановке задача интерполяции имеет единственное решение.

Интерполяционные функции обычно используются при нахождении неизвестных значений функции f(x) для промежуточных значений аргумента. При этом различают интерполирование в узком смысле, когда $x \in [x_0, x_n]$ и экстраполирование, когда $x \notin [x_0, x_n]$.

Во многих случаях функция задаётся таблично. Приблизительно описывается зависимость между узлами. Приближающаяся функция обычно берется в виде суммы элементарных функций. На практике используются степенные, показательные и тригонометрические функции.

Полиномиальное приближение

Будем рассматривать полиномиальное приближение, т.е. когда приближающая функция имеет вид $P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$. Рассмотрим три полинома: полином Лагранжа и первый и второй полиномы Ньютона.

Интерполяционный полином Лагранжа

$$P_n(x) = \sum_{i=0}^n y_i \frac{(x - x_0)(x - x_1)...(x - x_{n-1})(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$

Пример 1 Построить интерполяционный полином Лагранжа и провести проверку.

N	0	1	2	3	
\boldsymbol{x}	0	0.5	1	1.5	— таблица узлов
y	1	2	3	1	

Решение Для N=3 запишем полином Лагранжа:

$$P_3(x) = y_0 \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} + y_1 \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

Подставим...

$$P_3(x) = \frac{(x-0.5)(x-1)(x-1.5)}{(0-0.5)(0-1)(0-1.5)} + 2\frac{(x-0)(x-1)(x-1.5)}{(0.5-0)(0.5-1)(0.5-1.5)} + \frac{3(x-0)(x-0.5)(x-1.5)}{(1-0)(1-0.5)(1-1.5)} + \frac{(x-0)(x-0.5)(x-1)}{(1.5-0)(1.5-0.5)(1.5-1)} = \frac{(x^2-x-0.5x+0.5)(x-1.5)}{-0.75} + \frac{2(x^2-x)(x-1.5)}{0.25} + \frac{3(x^2-0.5x)(x-1.5)}{-0.25} + \frac{(x^2-0.5x)(x-1.5)}{0.75} = \frac{-4x^3+6x^2+1}{-10.25}$$

Проверка

1.
$$P_3(x_0) = -4x_0^3 + 6x_0^2 + 1 = 1 \equiv y_0$$

2.
$$P_3(x_1) = -4 \cdot 0.5^3 + 6 \cdot 0.5^2 + 1 = 2 \equiv y_1$$

3.
$$P_3(x_2) = -4 + 6 + 1 = 3 \equiv y_2$$

4.
$$P_3(x_3) = -4 \cdot 1.5^3 + 6 \cdot 1.5^2 + 1 = 1 \equiv y_3$$

Пример 2	Построить интерполяционные полиномы Ньютона по предыд	ущей
таблице узл	вых точек.	

,	•				
N	x	y	Δy	$\Delta^2 y$	$\Delta^3 y$
0	0	1	1	0	-3
1	0.5	2	1	-3	
2	1	3	-2		
3	1.5	1			

Первый интерполяционный полином Ньютона

$$P_n(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2! h^2}(x - x_0)(x - x_1) + \dots$$
$$\dots + \frac{\Delta^n y}{n! h^n}(x - x_0)(x - x_1)\dots(x - x_{n-1})$$

Конечные разности первого порядка

$$\Delta y(x)=y(x+h)-y(x),\,x\in[x_0,x_n],\,h=0.5$$

$$\Delta y(x)=y(x+0.5)-y(x)$$

$$\Delta y(x_0)=y(x_0+0.5)-y(x_0)=2-1=1$$

$$\Delta y(x_1)=y(x_1+0.5)-y(x_1)=y(1)-y(0.5)=3-2=1$$

$$\Delta y(x_2)=y(x_2+0.5)-y(x_2)=y(1.5)-y(1)=1-3=-2$$
 Конечные разности второго порядка
$$\Delta^2 y(x)=\Delta y(x+h)-\Delta y(x)=y(x+2h)-2y(x+h)+y(x)$$

$$\Delta^2 y(x) = \Delta y(x+h) - \Delta y(x) = y(x+2h) - 2y(x+h) + y(x)$$

$$\Delta^2 y(x) = y(x+1) - 2y(x+0.5) + y(x)$$

$$\Delta^2 y(x_0) = y(1) - 2y(0.5) + y(0) = 3 - 2 \cdot 2 + 1 = 0$$

$$\Delta^{2}y(x_{1}) = y(0.5 + 1) - 2y(0.5 + 0.5) + y(0.5) = 1 - 2 \cdot 3 + 2 = -3$$

Конечная разность i-го порядка определяется через реккурентное соотношение

$$\begin{array}{l} \Delta^{i+1}y(x) = \Delta^{i}y(x+h) - \Delta^{i}y(x) \\ \Delta^{3}y(x) = \Delta^{2}y(x+h) - \Delta^{2}(x) = y(x+3h) - 2y(x+2h) + \\ +y(x+h) - y(x+2h) + 2y(x+h) - y(x) = y(x+3h) - 3y(x+2h) - y(x) \\ \Delta^{3}y(x) = y(x+1.5) - 3y(x+1) + 3y(x+0.5) - y(x) \\ \Delta^{3}y(0) = y(1.5) - 3y(1) + 3y(0.5) - y(0) = 1 - 3 \cdot 3 + 3 \cdot 2 - 1 = -3 \end{array}$$

$$P_3(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2h^2}(x - x_0)(x - x_1) + \frac{\Delta^3 y_0}{6h^3}(x - x_0)(x - x_1)(x - x_2)$$

$$P_3(x) = 1 + \frac{1}{0.5}x - \frac{3}{6.0.5^3}x(x - 0.5)(x - 1) =$$

$$= 1 + 2x - \frac{1}{2.0.125}x(x^2 - x - 0.5 + 0.5) = -4x^3 + 6x^2 + 1$$

Второй интерполяционный полином Ньютона

$$P_n(x) = y_n + \frac{\Delta y_{n-1}}{h}(x - x_n) + \frac{\Delta^2 y_{n-2}}{h^2 2!}(x - x_n)(x - x_{n-1}) + \dots + \frac{\Delta^n y_0}{h^n n!}(x - x_n) \dots (x - x_1)$$

$$P_3(x) = y_3 + \frac{\Delta y_2}{h}(x - x_3) + \frac{\Delta^2 y_1}{2h^2}(x - x_3)(x - x_2) + \frac{\Delta^3 y_0}{6h^3}(x - x_3)(x - x_2)(x - x_1)$$

$$P_3(x) = 1 - 2 \cdot \frac{x - 1.5}{0.5} - \frac{3}{2 \cdot 0.25}(x - 1.5)(x - 1) - \frac{3}{6 \cdot 0.125}(x - 1.5)(x - 1)(x - 0.5) =$$

$$= (1 - 4x - 1.5) - 6(x^2 - x - 1.5x - 1.5) - 4(x^2 - x - 1.5x + 1.5)(x - 0.5) =$$

$$= -4x^3 + 6x^2 + 1$$

Пример 3

 \boldsymbol{x}

$$P_{n}(x) = y_{0} \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} + y_{1} \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} + y_{2} \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{2} - x_{0})(x - x_{1})(x - x_{3})} + y_{3} \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} =$$

$$= \frac{x(x - 0.5)(x - 1)}{-0.5 \cdot (-1) \cdot (-1.5)} + 2 \frac{(x + 0.5)(x - 0.5)(x - 1)}{0.5 \cdot (-0.5) \cdot (-1)} - \frac{(x + 0.5)x(x - 1)}{0.5 \cdot (-0.5)} =$$

$$= \frac{(x^{2} - x)(x - 0.5)}{-0.75} + 2 \frac{(x^{2} - 0.25)(x - 1)}{0.25} - \frac{(x^{2} - x)(x + 0.5)}{-0.25} - \frac{x^{3} - 0.25x}{0.75} =$$

$$= \frac{x^{3} - 1.5x^{2} + 0.5x}{-0.75} + 2 \frac{x^{3} - x^{2} - 0.25x + 0.25}{0.25} - \frac{x^{3} - 0.5x^{2} - 0.5x}{-0.25} - \frac{x^{3} - 0.25x}{0.75} =$$

$$= \frac{-x^{3} + 1.5x^{2} - 0.5x + 6x^{3} - 6x^{2} - 1.5x + 1.5 + 3x^{3} - 1.5x^{2} - 1.5x - x^{3} + 0.25x}{0.75} =$$

$$=\frac{7x^3 - 6x^2 - 3.25x + 1.5}{0.75} = \frac{4(7x^3 - 6x^2 - 3.25x + 1.5)}{3} = \frac{28x^3}{3} - 8x^2 - \frac{13x}{3} + 2x^2 - \frac{13x}{3}$$

Проверка

$$P_1(-0.5) = -\frac{28}{3 \cdot 8} - \frac{8}{4} - \frac{13}{3 \cdot 2} + 2 = -\frac{7}{6} - 2 + \frac{13}{6} + 2 = 1 \equiv y_0$$

$$P_3(0) = 2 \equiv y_1$$

$$P_3(0.5) = \frac{7}{6} - \frac{13}{6} = -1$$

Семинар 3 (10.10.16) «Численные методы решений трансцендентных и алгебраических уравнений. Метод касательных (метод Ньютона).»

Уравнение касательной $y = f(x_0) + f'(x_0) \cdot (x - x_0)$

В точке пересечения графика касательной с осью x ордината касательной y=0:

$$0 = f(x_0) + f'(x_0) \cdot (x_1 - x_0)$$

$$f'(x_0)(x_1 - x_0) = -f(x_0)$$

$$x_1 - x_0 = -\frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Пример 1

Дано

1.
$$x^3 - kx - L = 0$$

2.
$$k = 20$$

3.
$$L = 10$$

Рекомендуемый план решения

1. Находятся первая и вторая производные

$$f'(x) = 3x^2 - k$$
$$f''(x) = 6x$$

2. Очевидно, что корни (если они существуют) расположены левее, между или правее точек экстремума функции. Для непрерывной функции максимум или минимум может иметь место только в тех точках, где производная или равна нулю, или не существует $(=\infty)$.

$$x = \pm \sqrt{\frac{k}{3}} = \pm \frac{20}{3} = \pm 2.58$$

Задача нахождения корней уравнения f(x) = 0 делится на два этапа:

- 1. Локализация корня нахождение интервала, на котором изолирован единственный нужный нам корень. Выбор интервала производится путём анализа знака f(x) в ряде пробных точек.
- 2. Уточнение положения корня на интервале локализации

Свойства функции на интервале локализации (a,b):

- 1. f(x) непрерывна на (a,b)
- 2. f(x) монотонна на (a,b)

Выберем интервал (-5, -3)

$$f'(x) = 3x^2 - 20$$

$$f'(a) = 3 \cdot 9 - 20 = 7 > 0$$

$$f'(b) = 3 \cdot 25 - 20 = 55 > 0$$

3. f(x) меняет знак на (a,b)

$$f(a) = 27 - (-60) - 10 = 23 > 0$$

$$f(b) = -125 + 100 - 10 = -35 < 0$$

$$f(a) \cdot f(b) = f(-3) \cdot f(-5) < 0$$

4. f(x) не имеет точек перегиба: необязательно, но для сходимости некоторых методов необходимо.

$$f''(x) > 0$$
 или $f''(x) < 0$

$$f''(x) = 6x$$

$$f''(a) = 6 \cdot (-3) = -18 < 0$$

$$f''(b) = 6 \cdot (-5) = -30 < 0$$

Если функция имеет корень в точке своего локального, условие 3 не выполняется, однако оно необходимо для сходимости метода ____ хорд и секущих. Для сходимости метода секущих также необходимо выполнение условия 4.

Начальная точка выбирается из условия
$$c = \begin{cases} a, & \text{если } f(a) \cdot f''(a) > 0 \\ b, & \text{если } f(b) \cdot f''(b) > 0 \end{cases}$$
 $a = -3; \ f(-3) \cdot f''(-3) = 23 \cdot (-18) < 0$ $b = -5; \ f(-5) \cdot f''(-5) = -35 \cdot (-30) = 1050 > 0$ Выбираем $x_0 = -5$. $x_{n+1} = \varphi_k(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}$ — формула для метода Ньютона $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -5 - \frac{-35}{55} = -4.36$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 4.36 - \frac{-5.8166}{37.1239} \approx -4.21$ $f(x_1) = (-4.3636)^3 - 20 - (-4.3636) - 10 = -5.8166$

Метод итерации для уравнения f(x) = 0 рассмотрим на примере уравнения $f(x) = x^3 - 20x - 10$

$$x^{3} = 20x + 10$$

$$x = \sqrt[3]{20x + 10}$$

$$y(x) = \sqrt[3]{20x + 10}$$

Выберем интервал [3, 5]. В качестве начального условия выберем $x_0 = 3$.

Свойства функции на интервале [3,5]:

 $f'(x_1) = 3 \cdot (-4.3636)^2 - 20 = 37.1239$

- 1. f(x) непрерывна на [3, 5]
- 2. f(x) монотонна на [3,5]: f'(x)>0 или f'(x)<0, что обуславливает единственность корня

$$f'(3) = 3 \cdot 9 - 20 = 7 > 0$$

$$f'(5) = 3 \cdot 25 - 20 = 55 > 0$$

3. f(x) меняет знак на [a,b]: $f(a)\cdot f(b) < 0$, что обуславливает существование корня

$$f(3) = 27 - 60 - 10 = -43 < 0$$

$$f(5) = 125 - 100 - 10 = 15 > 0$$

$$f(3) \cdot f(5) = -43 \cdot 15 < 0$$

4. Если $|\varphi'(x)| < 1$, то итерационный процесс сходится в точном значении

(a)
$$x_{k+1} = \varphi(x)$$

(b)
$$\varphi(x) = \sqrt[3]{20x + 10}$$

(c)
$$\varphi'(x) = \frac{1}{3}(20x+10)^{-\frac{2}{3}} \cdot 20 = \frac{20}{3\sqrt[3]{(20x+10)^2}}$$

(d)
$$\varphi'(3) = \frac{20}{3\sqrt[3]{10^2}} = 0.3925 < 1$$

(e)
$$\varphi'(5) = \frac{20}{3\sqrt[3]{110^2}} = 0.2903 < 1$$

(f)
$$x_0 = 3$$

(g)
$$x_1 = \varphi(x_0) = \sqrt[3]{20 \cdot 3 + 10} = 4.12$$

(h)
$$x_2 = \varphi(x_1) = \sqrt[3]{20 \cdot 3.1212 + 10} = 4.52$$

Метод хорд Метод деления отрезка пополам имеет малую скорость сходимости, однако его можно улучшить, если использовать для следующего вычисления не середину отрезка, а то значение x, в котором даёт 0 линейная интерполяция между двумя известными значениями функции f(x) противоположного знака. Геометрически способ эквивалентен замене кривой y=f(x) хордой, проходящей через точки A=f(a) и B=f(b).

Рассмотрим два случая:

Первый случай: f(a) < 0

- 1. Проведём хорду, соединяющую две точки $x_0 = A$ и B и найдём точку x_1 пересечение хорды с осью x.
- 2. Восстанавливаем перпендикуляр из точки x_1 до пересечения с кривой f(x) (точка C)
- 3. Соединяем точку C с точкой B и найдём точку x_2 и т.д.
- 4. Последовательно приближаемся к корню x_*
- 5. Из подобия треугольников Aax_1 и Bbx_1 находим $\operatorname{tg}\alpha = \frac{f(b)}{b-x_1} = \frac{f(a)}{a-x_1}$

(a)
$$f'(b) = \frac{f(b)}{b-x_1} = \frac{f(a)}{a-x_1}$$

(b)
$$a - x_1 = \frac{f(a)}{f'(b)}$$

(c)
$$x_1 = a - \frac{f(a)}{f'(b)}$$

(d)
$$f'(b) = \frac{f(b) - f(a)}{b - a}$$

(e)
$$x_1 = a - \frac{f(a)}{f(b) - f(a)}(b - a)$$

(f)
$$x_2 = x_1 - \frac{f(x_1)}{f(b) - f(x_1)}$$

(g) $x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(a)}$, где $n = 0, 1, \dots$ образует монотонную бесконечно возрастающую последовательность, причём $x_0 < x_1 < \dots < b$

Второй случай: f(a) > 0

- 1. Проведём хорду, соединяющую две точки A и $x_0 = B$ и найдём точку x_1 пересечение хорды с осью x.
- 2. Восстанавливаем перпендикуляр из точки x_1 до пересечения с кривой f(x) (точка C)
- 3. Соединяем точку C с точкой A и найдём точку x_2 и т.д.
- 4. Последовательно приближаемся к корню x_*
- 5. Из подобия треугольников Aax_1 и Bbx_1 находим $\operatorname{tg}\alpha = \frac{f(b)}{b-x_1} = \frac{f(a)}{a-x_1}$

(a)
$$f'(a) = \frac{f(b)}{b-x_1} = \frac{f(a)}{a-x_1}$$

(b)
$$b - x_1 = \frac{f(b)}{f'(a)}$$

(c)
$$x_1 = b - \frac{f(b)}{f'(a)}$$

(d)
$$f(a) = \frac{f(b) - f(a)}{b - a}$$

(e)
$$x_1 = b - \frac{f(b)}{f(b) - f(a)} \cdot (b - a)$$

(f)
$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(a)}(x_1 - a)$$

(g)
$$x_{n+1} = x_n - \frac{f(x_n)(x_n - a)}{f(x_n) - f(a)}$$

Свойства функции на интервале локализации (a,b):

- 1. f(x) непрерывна на (a,b)
- $2. \ f(x)$ монотонна на (a,b)

Выберем интервал (-3, -3)

$$f'(x) = 3x^2 - 20$$

$$f'(a) = 3 \cdot 9 - 20 = 7 > 0$$

$$f'(b) = 3 \cdot 9 - 20 = 7 > 0$$

3. f(x) меняет знак на (a,b)

$$f(a) = -27 + 60 - 10 = 23 > 0$$

$$f(b) = 27 - 60 - 10 = -43 < 0$$

$$f(a) \cdot f(b) = f(-3) \cdot f(3) < 0$$

4. f(x) не имеет точек перегиба: необязательно, но для сходимости некоторых методов необходимо.

$$f''(x) > 0 \text{ или } f''(x) < 0$$

$$f''(x) = 6x$$

$$f''(-3) = -18 < 0$$

$$f''(-0.01) = (-0.01)^3 - 20 \cdot (-0.01) - 10 = -9.800001 < 0$$
(a) $x_1 = a - \frac{f(a)}{f(b) - f(a)} \cdot (b - a)$
(b) $x_1 = (-0.01) - \frac{-9.800001}{23.10.800001} (-3 + 0.01) = -0.9$

Пример 2

Методом итерации решить уравнение $x^5 + 5x - 1 = 0$ на интервале [-0.5, 0.5] с точностью 10^{-3} .

Решение

- 1. f(x) непрерывна на (a,b)
- 2. f(x) монотонна на (a,b)

$$f'(x) = 5x^4 + 5$$

$$f'(-0.5) = f'(0.5) = 5 \cdot 0.5^4 + 5 > 0$$

3. f(x) меняет знак на (a,b)

$$f(-0.5) = -0.5^5 + 5 \cdot (-0.5) - 1 < 0$$

$$f(0.5) = 0.5^5 + 5 \cdot 0.5 - 1 > 0$$

4. f(x) не имеет точек перегиба: необязательно, но для сходимости некоторых методов необходимо.

Лекция (18.10.16)

2 Квадратура Гаусса и Чебышева

$$\int_{a}^{b} f(x)dx = \sum_{i}^{z} A_{i}f(x_{i}) =$$

Определенный интеграл приблизительно равен среднему взвешенному знанению подынтегральной функции, вычисленным в определенных точка промежутках интегрирования.

Квадратуры характеризуются равноотстоящим характером узлов с шагом h, а соответсвующие веса A_i находились в результате подмены подынтегрально функции f(x) кусочно-постоянной функцией для ..., кусочно-линейной функцией в случае формул трапеций, кусочно-квадратичной функцией в случае формул Симпсона. К примеру, у формулы трапеции набор весовых коэффициентов имеет следующий вид: $\frac{h}{2}$; h; h; ...; h; $\frac{h}{2}$. Для формул Симпсона: $\frac{h}{3}$; $\frac{4h}{3}$; $\frac{2h}{3}$; $\frac{4h}{3}$; $\frac{2h}{3}$; ...; $\frac{4h}{3}$; $\frac{h}{3}$.

Откажемся от равномерного распределения узлов x_i и будем искать их замену. Подстановка: $x=\frac{a+b}{2}+\frac{b-a}{2}t$.

$$= \frac{b-a}{2} \int_{-1}^{1} f(\frac{a+b}{2} + \frac{b-a}{t}) dt$$

$$\tilde{I} = \int_{-1}^{1} \varphi(y)dt \approx \sum_{i=1}^{n} A_i \varphi_i(t_i)$$

n ранее означало число элементарных отрезков, на которые разбивался интеграл. Для данной записи оно означает число кругов.

Те же остаточные члены позволяют сделать вывод о точности, т.к. в формулу остаточного члена производная подынтегральной функции k — го порядка, то можно сказать, что соответствующая квадратура точна для многочленов степени k-1.

k-1 это алгебраический порядок точности квадратурной формулы.

$$\int_{-1}^{1} \varphi(t)dt \approx A \sum_{i=1}^{n} \varphi(t_i)$$

Формула Чебышева соответствует минимизации аппроксимации исходной функции $\varphi(t)$ в случае, если $\varphi(t)$ представляет собой нормально распределённую случайную величину.

Пусть $\varphi(x) \in \mathbb{P}^n = a_n x^n + \ldots + a_0$. Тогда рассматриваемый случай сводится

K

$$\begin{cases} t_1 + \dots + t_n = 0 \\ t_1^2 + \dots + t_n^2 = \frac{n}{3} \\ t_1^3 + \dots + t_n^3 = 0 \\ t_1^n + \dots + t_n^n = \frac{1 + (-1)^n}{2} \frac{n}{n+1} \end{cases}$$

Доказано, что данная система уравнений с n неизвестными коэффициентами определяет единственный набор узлов t_i . Эта система не имеет решения для n=8 и n>10. Для полинома степени n существует n различных решений.

3 Вычисление несобственных интегралов

Интеграл вида $\int_{-\infty}^{\infty} f(x)dx$ называется несобственным.

Для численного вычисления подобных интегралов применяется квадратура Гаусса. При этом:

1.
$$\int_0^\infty f(x)dx \leftrightarrow \int_0^\infty e^{-x}e^x f(x)dx$$

2.
$$\int_{-\infty}^{\infty} f(x)dx \leftrightarrow \int_{0}^{\infty} e^{-x^{2}} e^{x^{2}} f(x)dx$$

3.
$$\int_a^\infty f(x)dx = \lim_{b\to\infty} \int_a^b f(x)dx =$$

- (a) $b \leftrightarrow R_i$
- (b) = $\int_a^b f(x)dx$
- (с) Преполагается абсолютная сходимость интеграла.

4 Аппроксимация производных

Сложности:

- 1. Незнание аналитической вида дифференцируемых функций
- 2. Возможность значительного усложнения процедуры дифференцирования при точном понимании аналитического вида

Семинар (24.10.16)

Тема

Если известна первообразная функции F(x), можно вычислять определенный интеграл. Но когда первообразная не выражается через элементарные функции, например для $f(x) = \frac{\sin x}{x}$ или $f(x) = e^{-x^2}$ или выражения у F(x) очень сложные, то используют приближенные формулы для вычисления определённого интеграла (квадратурные формулы).

Метод Ньютона-Котеза

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} L_{n}(x)dx =$$

$$= \int_{a}^{b} \sum_{i=1}^{n} y_{i} \frac{(x - x_{0})(x - x_{1})...(x - x_{i-1})(x - x_{i+1})...(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})...(x_{i} - x_{i-1})(x_{i} - x_{i+1})....(x_{i} - x_{n})} =$$

$$= \sum_{i=1}^{n} y_{i} \int_{a}^{b} \frac{(x - x_{0})(x - x_{1})...(x - x_{i-1})(x - x_{i+1})...(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})...(x_{i} - x_{i-1})(x_{i} - x_{i+1})....(x_{i} - x_{n})} dx = \sum_{i=1}^{n} y_{i} A_{i}$$

$$A_{i} = \int_{a}^{b} \frac{(x - x_{0})(x - x_{1})...(x - x_{i-1})(x - x_{i+1})...(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})...(x_{i} - x_{i-1})(x_{i} - x_{i+1})...(x_{i} - x_{n})} dx$$

$$H_{i} = \frac{1}{n} \cdot \frac{(-1)^{n-i}}{i!(n-i)!} \int_{0}^{n} \frac{q^{[n+1]}}{q - i} dq; (i = 0, 1, 2, ..., n); q^{[n+1]} = q(q - 1)...(q - n)$$

Метод прямоугольников

Степень полинома n=0; $P_0(x)=const$. Коэффициент Котеза при n=0 (вычисляется как предельный переход при $n\to 0$) равен 1. Интервал $(x_0...x_n)$ не определён, т.к. есть только одна точка x_0 . Геометрически это означает, что f(x) заменяется на интервалле каким-то значением ординаты. Если интервал (a,b) велик, то его разбивают точками x_i на n интервалов и на каждом применяют метод прямоугольников.

Для первого интервала приближенное значение интеграла равно $f(\tilde{x})(x_1-x_0), \ \tilde{x} \in [x_0,x_1]$

$$I_{\pi.\pi.} = h \sum_{i=0}^{n-1} f(x_i)$$
 $I_{\pi.\pi.} = h \sum_{i=1}^{n-1} f(x_i)$
 $I_{c.\pi.} = h \sum_{i=0}^{n-1} f(x + \frac{h}{2}) = h \sum_{i=1}^{n} f(x_i - \frac{h}{2})$
Для $n = 4$:
 $I_{\pi.\pi.} = h(y_0 + y_1 + y_2 + y_3)$, где $y_i = y(x_i) = \frac{x_i + 0.6}{x_1^2 + ???}$
 $x_i = 0, 2 + i \cdot h; i = 0, 1, 2, 3$
 $h = (1, 6 - 0, 2)/4 = 0, 35$

i	x_i	$x_i + 0.6$	$x_i^2 + x_i + 1$	y_0, y_1, y_3, y_4
0	0.2	0.8	1.24	0.64516
1	0.55	1.15	1.8525	0.62078
2	0.9	1.5	2.71	0.5535
3	1.25	1.85	3.8125	0.485246
\sum				2.304686

 $I = 0.35 \cdot 2.304686 = 0.80664$

Метод правых прямоугольников $I_{\text{п.п.}} = h(y_1 + y_2 + y_3 + y_4); x_i = 0.55 + ih; i = 1, 2, 3, 4; h = (1.6 - 0.2)/4 = 0.35$

_ / / '	-))	(//	
i	x_i	$x_i + 0.6$	$x_i^2 + x_i + 1$	y_1, y_2, y_3, y_4
1	0.55	1.15	1.8525	0.6278
2	0.9	1.5	2.71	0.5535
3	1.25	1.85	3.8125	0.485246
4	1.6	2.2	5.16	0.42636
\sum				2.085886

 $I = 0.35 \cdot 2.08558 = 0.83006$

Метод средних прямоугольников $I_{\text{с.п.}} = h \sum_{i=0}^{n-1} f(x + \frac{h}{2}); h \approx 0.35; \frac{h}{2} = 0.175$

- 1	0				
	i	x_i	$x_i + 0.6$	$x_i^2 + x_i + 1$	y_1, y_2, y_3, y_4
	0	0.375	0.975	1.515625	0.643299
	1	0.725	1.325	2.250625	0.588725
	2	1.075	1.675	3.230625	0.5184755
	3	1.425	2.025	4.455625	0.454482
	\sum				2.204981165

 $I = 0.35 \cdot 2.2049811 = 0.771434$

Метод трапеций

На частичном интервале функция заменяется линейной, т.е. n=1.

$$H_i = \frac{1}{n} \cdot \frac{(-1)^{n-1}}{i!(n-i)!} \int_0^n \frac{q^{[n+1]}}{q-i} dq; \ q^{[n+1]} = q(q-1)...(q-n)$$

$$H_{i} = \frac{(-1)^{q-i}}{i!(1-i)!} \int_{0}^{1} \frac{q(q-1)}{q-1} dq$$

$$H_{0} = -\int_{0}^{1} \frac{q(q-1)}{q} dq = -\int_{0}^{1} (q-1) dq = -(\frac{q^{2}}{2} - q)|_{0}^{1} =$$

$$= -((\frac{1}{2} - 0) - (1 - 0)) = -(\frac{1}{2} - 1)^{0} = -(-\frac{1}{2}) = \frac{1}{2}$$

$$H_{1} = \int_{0}^{1} \frac{q(q-1)}{q-1} dq = \frac{q^{2}}{2}|_{0}^{1} = \frac{1}{2}$$

На интервале $|x_i, x_{i+1}|$, получим $I = h(f_i + f_{i+1})/2$, т.е. площадь криволинейной трапеции заменена площадью прямоугольной трапеции. Суммируя по всем интервалам, приходим к выражению $I_{\mathrm{Tp}}=\frac{h}{2}\sum_{i=0}^{n-1}(f_i+f_{i+1})$. Окончательно получим $I_{\text{тр}} = \left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(i)\right) \cdot h.$

$$a = (K - L)/2 = (1 - 0.6)/2 = 0.2$$

$$b = (K + L) = 1 + 0.6 = 1.6$$

$$I = \int_{0.2}^{1.6} \frac{x + 0.6}{x^2 + x + 1} dx$$

$$I = \int_{0.2}^{1.6} \frac{x + 0.6}{x^2 + x + 1} dx$$

$$I_{\mathrm{Tp}} = (\frac{y_0 + y_4}{2} + y_1 + y_2 + y_3) \cdot h$$
, где $x_i = 0.2 + h$, $i = 0, 1, 2, 3, 4$

i	x_i	$x_i + 0.6$	$x_i^2 + x_i + 1$	y_0, y_4	y_1, y_2, y_3
0	0.2	0.8	1.24	0.64516	
1	0.5	1.15	1.8525		0.68078
2	0.9	1.5	2.71		0.5535
3	1.25	1.85	3.8125		0.485246
4	1.6	2.2	5.16	0.42636	
\sum				1.07152	1.659526

 $I = (1.07152/2 + 1.659526) \cdot 0.35 = 0.76835$

Семинар (07.11.16)

Квадратурная формула Гаусса

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n], (n = 0, 1, ...)$$

Важнейшие свойства полинома Лежандра:

- 1. $P_n(1) = 1$; $P_n(-1) = (-1)^n$; (n = 0, 1, ...)
- 2. $\int_{-1}^{1} P_n(x) \cdot Q_k(x) dx = 0$ (k < n), где $Q_k(x)$ любой полином степени < k
- 3. $P_n(x)$ имеет n различных и действительных корней, которые расположены на интервале [-1;1]

Первые 5 полиномов Лежандра

- 1. $P_0(x) = 1$
- 2. $P_1(x) = x$
- 3. $P_2(x) = \frac{1}{2}(3x^2 1)$
- 4. $P_3(x) = \frac{1}{2}(5x^3 3x)$
- 5. $P_4(x) = \frac{1}{8}(35x^4 30x^2 + 3)$

Вывод квадратурной формулы Гаусса

Рассмотрим функцию y=f(t), заданную на стандартном интервале [-1;1]. Общий случай легко свести к частному путём линейной замены независимой переменной.

Поставим задачу, как нужно подобрать точки $t_1,t_2,...,t_n$ и коэффициенты $A_1,A_2,...,A_n$ так, чтобы квадратурная формула $\int_{-1}^1 f(t)dt = \sum_{i=1}^n A_i f(t_i)$ была точной для всех полиномов f(t) наивысшей возможной степени наивысшей возможной степени N.

Так как в нашем распоряжении имеется 2n постоянных t_i и A_i (i=1,2,...,n), а полином степени 2n-1 определяется 2n коэффициентами, то эта наивысшая степень в общем случае равна N=2n-1.

Для обеспечения равенства $\int_{-1}^{1} f(t)dt = \sum_{i=1}^{n} A_i f(t_i)$ необходимо и достаточно, чтобы оно было верно при $f(x) = 1, t, t^2, ..., t^{2n-1}$. Полагая $\int_{-1}^{1} t^k dt = \sum_{i=1}^{n} A_i t_i^k \ (k=0,1,...,2n-1)$ и $f(t) = \sum_{k=0}^{2n-1} c_k t^k$ будем иметь:

$$\int_{-1}^{1} f(t)dt = \sum_{k=0}^{2n-1} c_k \int_{-1}^{1} t^2 dt =$$

$$= \sum_{k=0}^{2n-1} c_k \sum_{i=1}^{n} A_i t_i^k = \sum_{i=1}^{n} A_i \sum_{k=0}^{2n-1} c_k t_i^k = \sum_{i=1}^{n} A_i f(t_i)$$

Учитывая соотношение
$$\int_{-1}^1 t^k dt = \frac{1-(-1)^{k+1}}{k+1} = \begin{cases} \frac{2}{k+1} & \text{при } k$$
четном $0 & \text{при } k$ нечетном $0 & \text{при } k$

 $\sum_{i=1}^{n} A_i f(t_i)$, заключаем, что для решения поставленной задачи достаточно определить t_i и A_i из системы 2n уравнений.

Система (3):

$$\begin{cases} \sum_{i=1}^{n} A_i = 2\\ \sum_{i=1}^{n} A_i t_i = 0\\ \sum_{i=1}^{n} A_i t_i^{2n-2} = \frac{2}{2n-1}\\ \sum_{i=1}^{n} A_i t_i^{2n-1} = 0 \end{cases}$$
(3)

Система (3) нелинейна и решение её представляет большие математические сложности. Однако, здесь можно применить следующий искусственный приём: Рассмотрим $f(t) = t^k P_n(t)$ (k=0,1,...,n-1), где $P_n(t)$ — полином Лежандра. Так как степени этих полиномов не превышают 2n-1, то на основании системы (3) для них должна быть справедлива формула $\int_{-1}^1 t^k P_n(t) dt = \sum_{i=1}^n A_i t_i^k P_n(t_i)$ (k=0,1,...,n-1). С другой стороны, в силу свойства ортогональности полиномов Лежандра (свойство 2), выполнены равенства: $\int_{-1}^1 t_k P_n(t) dt = 0$ при k < n, поэтому $\sum_{i=1}^n A_i t_i^k P_n(t_i) = 0$ (k=0,1,...,n-1).

То есть для достижения наивысшей степени квадратурной формулы, в качестве точек t_i достаточно взять нули соответствующего полинома Лежандра. Как известно (свойство 3), эти нули действительны, различны и расположены на интервале [-1,1]. Зная абсциссы t_i легко можно найти из линейной системы первых n уравнений системы (3) коэффициенты A_i (i=1,...,n). $D=\prod_{i>j}(t_i-t_j)\neq 0$, следовательно A_i определяется однозначно.

Формула $\int_{-1}^{1} f(t)dt = \sum_{i=1}^{n} A_{i}f(t_{i})$, где t_{i} — нули полинома Лежандра, а A_{i} (i=1,2,...,n) определяются системой (3) называется **квадратурной формулой Гаусса**.

Пример 1

Вывести квадратурную формулу Гаусса для случая трёх ординат (N=3).

Решение Полином Лежандра 3 степени: $P_3(t) = \frac{1}{2}(5t^3 - 3t)$. Приравнивая этот полином нулю, находим t_i :

1.
$$t_1 = -\sqrt{\frac{3}{5}} \approx -0.74597$$

$$2. \ t_2 = 0.774597$$

3.
$$t_3 = \sqrt{\frac{3}{5}} \approx 0,774597$$

$$\begin{cases} A_1 + A_2 + A_3 = 2\\ -\sqrt{\frac{3}{5}}A_i + \sqrt{\frac{3}{5}}A_3 = 0\\ \frac{3}{5}A_1 + \frac{3}{5}A_3 = \frac{2}{3} \end{cases}$$
 $A_1 = A_3 = \frac{5}{9}, A_2 = \frac{8}{9}$
$$\int_{-1}^{1} f(t)dt = \frac{1}{9}[5f(-\sqrt{\frac{3}{5}}) + 8f(0) + 5f(\sqrt{\frac{3}{5}})]$$

Рассмотрим использование квадратурной формулы Гаусса для вычисления общего интеграла $\int_a^b f(x)dx$. Делая замену переменной $x=\frac{b+a}{2}$, получаем $\int_{-1}^1 f(\frac{b+a}{2}+\frac{b-a}{2}t)dt$. Применяя к последнему интегралу квадратурную формулу Гаусса получим $\int_a^b f(x)dx = \frac{b-a}{2}\sum_{i=1}^n A_i f(x_i)$, где $x_i = \frac{b+a}{2} + \frac{b-a}{2}t_i$, (i=1,2,...,n), t_i — нули полиному Лежандра $(P_n(t_i)=0)$.

Пример 2 Вычислить интеграл $I = \int_{0.2}^{1.6} \frac{x+0.6}{x^2+x+1} dx$, применяя квадратурную формулу Гаусса с тремя ординатами.

Решение

1.
$$x_1 = 0.9 + 0.7 \cdot (-0.7745) = 0.3578$$

2.
$$x_2 = 0.9 + 0.7 \cdot 0 = 0.9$$

3.
$$x_3 = 0.9 + 0.7 \cdot 0.7745 = 1.44219$$

t	1	2	3	\sum
t_i	-0.774596	0	0.774596	
x_i	0.357808	0.9	1.4421917	
$x_i + 0.6$	0.957808	1.5	2.0421917	
$x_i^2 + x_i + 1$	1.485834	2.71	4.5221688	
$f(x_i)$	0.644626	0.553505	0.4516016	
A_i	0.555555	0.888888	0.555555	
$A_i f(x_i)$	0.35812569	0.492049	0.2508898	1.1010204

 $0.7 \cdot 1.10102041 = 0.770714 - \text{ответ}$

Численные методы линейной алгебры

Метод Гаусса (метод исключений): Последовательно в уравнениях, начиная с первого, выделяется ведущий элемент, на который производится деление. В случае необбходимости строки и столбцы переставляются.

Расмотрим систему из трёх уравнений с тремя неизвестными

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = a_{14} \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = a_{24} \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = a_{34} \end{cases} (2.1)$$

Прямой ход (шаг 1). Пусть $a_{11} \neq 0$ (ведущий элемент). Разделив первое уравнение системы на a_{11} получим: $x_1+b_{12}x_2+b_{13}x_3=b_{14}$, где $b_{ij}=\frac{a_{ij}}{a_{11}}$ (j=2,3,4).

Пользуясь уравнением (2.2) можно исключить неизвестные x_1 из второго и третьего уравнения системы (2.1). Для этого следует умножить уравнение (2.2) на a_{21} и a_{31} и вычесть результаты, соответственно, из 2 или 3 уравнения системы. В результате получим систему трёх уравнений.

$$\begin{cases} x_1 + b_{12}x_2 + b_{13}x_3 = b_{14} \\ a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 = a_{24}^{(1)} \\ a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 = a_{34}^{(1)} \end{cases}$$

$$a_{ij}^{(1)} = a_{ij} - a_{i1} \cdot b_{1j} \ (i = 2, 3; j = 2, 3, 4).$$

Шаг 2. Выберем $a_{22}^{(1)}$ в качестве ведущего элемента (при необходимости, строки или столюцы переставляются). На него делится вторая строка, а все остальные элементы преобразуются по формуле $b_{2j}^{(1)} = \frac{a_{2j}^{(1)}}{a_{22}^{(1)}} \ (j=3,4). \ x_2 + b_{23}^{(1)} x_3 = b_{24}^{(1)}$.

Исключая теперь x_2 также, как мы исключали x_1 , получим уравнение $a_{33}^{(2)}x_3=a_{34}^{(2)},\,a_{ij}^{(2)}=a_{ij}^{(1)}-a_{i2}^{(1)}\cdot b_{2j}^{(1)},\,(i=3,\,j=3,4).$

$$\begin{cases} x_1 + b_{12}x_2 + b_{13}x_3 = b_{14} \\ x_2 + b_{23}^{(1)}x_3 = b_{24}^{(1)} \\ a_{33}^{(2)}x_3 = a_{34}^{(2)} \end{cases}$$

Обратный ход: Последовательно находим

1.
$$x_3 = \frac{a_{34}^{(2)}}{a_{33}^{(2)}}$$

2.
$$x_2 = b_{24}^{(1)} - b_{23}^{(1)} x_3$$

3.
$$x_1 = b_{14} - b_{13}x_3 - b_{12}x_2$$

Пример 3
$$\begin{cases} x_1+x_2-x_3=0\\ 2x_1+x_2+x_3=7\\ x_1-x_2+x_3=2 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & -1 & 0\\ 2 & 1 & 1 & 7\\ 1 & -1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 & 0\\ 0 & -1 & 3 & 7\\ 0 & -2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 & 0\\ 0 & -1 & 3 & 7\\ 0 & 0 & -4 & -12 \end{pmatrix}$$

$$\begin{cases} x_1+x_2-x_3=0\\ -x_2+3x_3=7\\ -4x_3=-12 \end{cases} \begin{cases} x_1=1\\ x_2=2\\ x_3=3 \end{cases}$$

Семинар (21.11.16)

	i	a_{i1}	a_{i2}	a_{i3}	a_{i4}	$\sum = a_{i5}$
	1	1	1	-1	0	1
I	2	2	1	1	7	11
1	3	1	1	1	2	3
		1	1	-1	0	1
	2		1	3	7	9
II	3		-2	2	2	2
			1	-3	-7	-9
III	3			-4	-12	-16
				1	3	4
IV			1		2	3
		1			1	2

Пример 2 Решить систему линейных алгебраических уравнений (Слау) методом Гаусса с выбором главного элемента.

$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 + x_2 + x_3 = 7 \\ x_1 + x_2 + x_3 = 2 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & -1 & 0 \\ 2 & 1 & 1 & 7 \\ 1 & 1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & -1 & 3 & 7 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$

$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ -x_2 + 3x_3 = 7 \\ x_3 = 1 \end{cases}$$

$$\begin{cases} x_1 = 4 + 1 = 5 \\ x_2 = -7 + 3 = -4 \\ x_3 = 1 \end{cases}$$

	i	m_i	a_{i1}	a_{i2}	a_{i3}	a_{i4}	$\sum = a_{i5}$
	1	$\frac{1}{2}$	1	1	-1	0	1
I	2	-	2	1	1	7	11
	3	$\frac{1}{2}$	1	-1	1	2	3
	1			$\frac{1}{2}$	$-\frac{3}{2}$	$-\frac{7}{2}$	$-\frac{9}{2}$
II	-				1.		-16
	3			$-\frac{3}{2}$	$\frac{1}{2}$	$-\frac{3}{2}$	$-\frac{5}{2}$
III	1				-4	-12	-16
	1				1	3	4
IV	2			1		2	3
	3		1			1	2

К прямым методом решения Слау относится метод ортогонализации.

Ортогонализация матриц

Дана матрица с действительными элементами

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Столбцы матрицы A будем рассматривать как векторы
$$\vec{a}^{(j)} = \begin{vmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{nj} \end{vmatrix}$$

 $A = [|\vec{a_1}| \cdot |\vec{a_2}| \cdot ... \cdot |\vec{a_n}|]$, где $\vec{a_i}$ линейно независимы.

Теорема Всякую действительную неособенную матрицу A можно представить в виде произведения матрицы с ортогональными столбцами на верхнюю треугольную матрицу. A = RT, где R — матрица с ортогональными столбцами, T — верхняя треугольная матрица с единичной диагональю.

Доказательство Рассмотрим матрицу при n=3

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$A = [\vec{a_1}\vec{a_2}\vec{a_3}]$$
, где $\vec{a_{ij}} = \begin{vmatrix} a_{1j} \\ a_{2j} \\ a_{3j} \end{vmatrix}$ $t_{12} = \frac{(\vec{a_2}, \vec{r_1})}{(\vec{r_1}, \vec{r_2})}$

$$\begin{split} \vec{r_2} &= \vec{a_2} - t_{12} \cdot \vec{r_1} \\ t_{13} &= \frac{(\vec{a_3}, \vec{r_1})}{(\vec{r_1}, \vec{r_1})} \\ t_{23} &= \frac{(\vec{a_3}, \vec{r_2})}{(\vec{r_2}, \vec{r_2})} \\ \vec{r_3} &= \vec{a_3} - t_{13} \cdot \vec{r_1} - t_{23} \cdot \vec{r_2} \\ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{vmatrix} \cdot \begin{vmatrix} 1 & t_{12} & t_{13} \\ 0 & 1 & t_{23} \\ 0 & 0 & 1 \end{vmatrix} \end{split}$$

Пример 3 Ортогонализировать столбцы в матрице

$$A = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$
Положим $\vec{r_1} = [1, 2, 1] = \vec{a_1}$

$$t_{12} = \frac{(\vec{a_2}, \vec{r_1})}{(\vec{r_1}, \vec{r_1})} = \frac{1+2-1}{1+4+1} = \frac{1}{3}$$

$$\vec{r_2} = \vec{a_2} - t_{12}\vec{r_1} = [1, 1, -1] - \frac{1}{3}[1, 2, 1] = [1, 1, -1] - \left[\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right] = \left[\frac{2}{3}, \frac{1}{3}, -\frac{4}{3}\right]$$

$$t_{13} = \frac{(\vec{a_3}, \vec{r_1})}{(\vec{r_1}, \vec{r_1})} = \frac{-1+2+1}{6} = \frac{1}{3}$$

$$t_{23} = \frac{(\vec{a_2}, \vec{r_2})}{(\vec{r_2}, \vec{r_2})} = \frac{-\frac{2}{3} + \frac{1}{3} - \frac{4}{3}}{\frac{4}{9} + \frac{1}{9} + \frac{16}{9}} = -\frac{5}{7}$$

$$\vec{r_3} = \vec{a_3} - t_{13}\vec{r_1} - t_{23} \cdot \vec{r_2} = [-1, 1, 1] - \frac{1}{3}[1, 2, 1] + \frac{5}{7}[\frac{2}{3}, \frac{1}{3}, -\frac{4}{3}] = [-\frac{6}{7}, \frac{4}{7}, -\frac{3}{7}]$$

$$A = \begin{vmatrix} 1 & \frac{2}{3} & -\frac{6}{7} \\ 2 & \frac{1}{3} & \frac{4}{7} \\ 1 & -\frac{4}{3} & -\frac{2}{7} \end{vmatrix} \cdot \begin{vmatrix} 1 & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & -\frac{5}{7} \\ 0 & 0 & 1 \end{vmatrix}$$

Итерационные методы решения Слау

Метод простых итераций

Пример 1 Решить систему уравнений.

На главной диагонали матрицы располагаются наибольшие по модулю элементы строки. $|a_{ii}|>\sum_{j\neq i}^n|a_{ij}|$

$$\begin{cases} 5x_1 + 0.12x_2 + 0.09x_3 = 10 \\ 0.08x_1 + 4x_2 - 0.15x_3 = 20 \\ 0.18x_1 - 0.06x_2 + 3x_3 = -4.5 \end{cases}$$

$$\begin{cases} x_1^{(k+1)} = 2 - 0.024x_2^{(k)} - 0.018x_3^{(k)} \\ x_2^{(k+1)} = 50.02x_1^{(k)} + 0.03x_3^{(k)} \\ x_3^{(k+1)} = -1.5 - 0.06x_1^{(k)} - 0.02x_2^{(k)} \end{cases}$$

Приведём матрицу к ортогональному виду

$$\begin{cases} x_1 = 2 - 0.024x_2 - 0.018x_3 \\ x_2 = 5 - 0.02x_1 + 0.03x_3 \\ x_3 = -1.5 - 0.06x_1 + 0.02x_2 \end{cases}$$

$$x^{(0)} = (2, 5, -1.5) - \text{первое приближение}$$

$$\begin{cases} x_1^{(1)} = -2 - 0.024 \cdot 5 - 0.018 \cdot (-1.5) = 1.907 \\ x_2^{(1)} = 5 - 0.02 \cdot 2 + 0.03 \cdot (-1.5) = 4.915 \\ x_3^{(1)} = -1.5 - 0.06 \cdot 2 + 0.02 \cdot 5 = -1.52 \end{cases}$$

$$x^{(1)} = (1.907, 4.915, -1.52)$$

$$x^{(2)} = (1.909, 4.916, -1.516)$$

$$x^{(3)} = (1.909, 4.916, -1.516)$$
 С точностью до 10^{-3} решением системы является вектор $x^{(3)}$.

Точное решение системы $\begin{cases} 5x_1 + 0.12x_2 + 0.09x_3 = 10 \\ 0.08x_1 + 4x_2 - 0.15x_3 = 20 \\ 0.18x_1 - 0.06x_2 + 3x_3 = -4.5 \end{cases} \begin{cases} x_1 = 1.909577 \\ x_2 = 4.90494 \\ x_3 = -1.51647 \end{cases}$

Метод Зейдера

Лекция (22.11.16)

5 Численное решение дифференциальных уравнений

5.1 Метод изоклин

Линия L называется **изоклиной**, если вдоль этой линии поле направлений дифференциального уравнения постоянно.

Для построения интегральных кривых проводится линия так, чтобы поле направлений касалось её.

Из всевозможных изоклин выделяют нулевую — линию экстремума.

1.
$$y' = 1 - x^2 - y^2$$

2.
$$y'' = 0$$

3.
$$y'' = -2x - 2yy' = 0$$

4.
$$-2x - 2y(1 - x^2y^2) = 0$$

Все методы численного решения следуют из метода Эйлера (метод ломанных кривых).

Пусть
$$y' = f(x; y); y(x_0) = y_0$$

Найти Наборы точек, удовлетворяющие задаче Коши.

Решение Воспользуемся геометрическим смыслом дифференциального уравнения

$$tg \varphi_{i} = f(x_{i}, y_{i})$$

$$\Delta y_{i} = h + gy_{i} = hf(x; y)$$

$$y_{i+1} = y_{i} + \Delta y = y_{i} + hf(x; y)$$

$$\begin{cases} x_{i+1} = x_{i} + hi \\ y_{i+1} = y_{i} + hf(x_{i}; y_{i}) \end{cases}$$

При малом шаге h и большом числе точек M методом Эйлера можно пользоваться только если число точек велико, но даже при малом h ошибка $\varepsilon \approx hn$.

Рассмотрим задачу Коши. Решение состоит из двух шагов:

1.
$$A: \begin{cases} x_a = x_i + \frac{R}{2} \\ y_a = y_i + \frac{h}{2} f(x, y) \end{cases}$$

2.
$$\begin{cases} x_{i+1} = x_i + h \\ y_{i+1} = y_i + h f(A) \end{cases}$$

3.
$$\forall i : \begin{cases} x_{i+1} = x_i + l \\ y_{i+1} = y_i + hf(x_i + \frac{h}{2}; y_i + \frac{h}{2}f(x, y)) \end{cases}$$

Улучшенный метод Эйлера даёт большую точность, т.к. учитывает наклон интегральной кривой в середине отрезка. Если h — достаточно малая величина, то для любого отрезка може быть получено решение улучшенным методом Эйлера с достаточной точностью.

Семинар (05.12.16)

Нахождение собственных значений и собственных векторов матриц

Для нахождения собственных значений необходимо решить уравнение $|A-E\lambda|=0$.

Пример Найти собственные значения и собственные векторы матрицы $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$.

$$\vec{y_0} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \ \vec{y_1} = A \cdot \vec{y_0} = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 СЛАУ имеет вид: $d_1 \vec{y_1} + d_2 \vec{y_2} = -\vec{y_2}$ $\vec{y_2} = A \cdot \vec{y_1} = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 15 \\ 1 \end{pmatrix}$ $d_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + d_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\begin{pmatrix} 15 \\ 1 \end{pmatrix}$ $d_1 + d_2 = -1$

$$\lambda^2 - 5\lambda + 4 = 0$$

$$\lambda = 1; 4$$

Построим полиномы для нахождения собственных векторов.

$$R_1(\lambda) = \lambda - 4$$

$$R_2(\lambda) = \lambda - 1$$

$$\vec{x_1} = \vec{y_1} - 4\vec{y_0} = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$$

 $\vec{x_2} = \vec{y_1} - \vec{y_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Проверка:

$$A\vec{x_1} = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$$
$$\lambda_1 \vec{x_1} = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$$
$$A\vec{x_2} = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 12 \\ 0 \end{pmatrix}$$
$$\lambda_2 \vec{x_2} = 4 \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 12 \\ 0 \end{pmatrix}$$

Численные методы решения обыкновенных диф. уравнений (ОДУ)

y' = f(x; y), где f(x; y) — некоторая заданная в общщем случае функция двух переменных.

Будем считать, что для данной задачи, называемой начальной задачей или задачей Коши выполняется требование, обеспечивающее существование и единственность на отрезке $[x_0,b]$ её решение y=y(x)

Приближенные способы решения начально задачи для ОДУ:

- 1. Приближенно-аналитические методы
- 2. Графические или машинно-графические методы
- 3. Численные методы

Метод Коши-Эйлера (квадратурный способ)

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dx$$

При $x = x_1$
 $y(x_1) = y_0 + \int_{x_0}^{x_1} f(x, y(x)) dx$

Применив к этому интегралу простейшую формулу левых треугольников получим: $y(x_1) \approx y_0 + f(x_0, y(x_0))(x_1 - x_0)$

Расчётная формула метода Эйлера $y(x_{i+1}-y(x_i))-\int_{x_i}^{x_{i+1}}f(x,y(x))dx$

$$y_{i+1} = y_i + h \cdot f(x_{i+1}, y_{i+1}); i = 0, 1, ..., n$$

 $y_{i+1} = y_i + \frac{1}{2}(f(x_i, y_i) + f(x_{i+1}, y_{i+1}))$

Рассмотрим комбинированный метод явного метода Эйлера и неявного метода трапеций.

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_i + h, y_i + h \cdot f(x_i, y_i)))$$

$$y_{i+1} = y_i + h \cdot f(x_i, y_i)$$

Пример
$$y' = x^2 + y; y(0) = 2; [0; 2]; h = 0.5$$
 $y'(x_0) = 2; x_1 = 0.5; y_1 = 3$ $y_1 = y_0 + h \cdot f(x_0, y_0) = 2 + 0.5 \cdot 2 = 3$ $f(x_1, y_1) = 0.25 + 3 = 3.25$ $y_1 = y_0 + 0.25(f(x_0, y_0) + f(x_0 + 0.5, y_0 + 0.5 \cdot f(x_0, y_0)) = 2 + 0.25(2 + 3.25) = 3.3125$

$$f(x_0 + 0.5, y_0 + 0.5 \cdot f(x_0, y_0)) = f(0.5, 3) = 0.25 + 3 = 3.25$$

$$x_2 = x_1 + h = 1; y_1 = 3.3125$$

$$y_2 = y_1 + 0.25 \cdot f(x_1, y_1) + f(x_1 + h, y_1 + h \cdot f(x_1, y_1)) = 5.09375$$

```
\begin{array}{l} f(x_1,y_1) = 0.25 + 3.3125 = 3.5625 \\ y_2 = 3.3125 + 0.25(3.5625 + f(1.33125 + 0.5 \cdot 3.5625)) = 5.726562 \\ \text{Ответ: } y_0 = 2; \ y_1 = 3.3125; \ y_2 = 5.72656; \ y_3 = 10.2432; \ y_4 = 18.4889 \end{array}
```

Лекция (6.12.2016)

Контрольная работа №1

Задание 1 (вариант 1) Показать, что предельная и абсолютная погрешности суммы или разности равна сумме или разности предельных абсолютных погрешностей до члена второго порядка малости.

Пусть A — точное значение некоторой величины, а a — наилушее из известных приближений. В этом случае ошибка (или погрешность) приближения a определяется разностью A-a. Обычно, знак этой ошибки не имеет решающего значения, поэтому рассматривают абсолютную величину ошибки $e_a = |A-a|$.

Величина e_a называется абсолютной погрешностью приближенного значения a. В большинстве случаев остаётся неизвестной, т.к. для её вычисления нужно точное значение A. На практике применяют равенство $\Delta a = |A-a|$. Число Δa называют предельной абсолютной погрешностью (или границей абсолютной погрешности) приближения a.

Абсолютная погрешность алгебраической суммы приближённых значений не превышает суммы абсолютных погрешностей этих значений.

Пусть S=X+Y— сумма точных чисел, среди которых могут быть как положительные, так и отрицательные, а s=x+y— сумма приближений. Составим разность $S-s=(X-x)+(Y-y);\ |S-s|\le |X-x|+|Y-y|,$ т.е. $e_s\le e_x+e_y$ или тем более $e_s\le \Delta x+\Delta y$, откуда следует, что нужно принять $\Delta s=\Delta x+\Delta y$, т.е. предельной абсолютной погрешностью суммы можно считать сумму предельных абсолютных погрешностей слагаемых.

Для разности $e_s \leq \Delta x - \Delta y$, т.е. предельной абсолютной погрешностью разности можно считать разность предельных абсолютных погрешностей вычитаемых.

Пример 1 Даны приближенные вычисления x=18.437; y=24.9, y которых все цифры являются верными.

Найдём сумму S = X + Y = 18.437 + 24.9 = 43.337.

Для оценки точности результата вычислим сумму погрешностей слагаемых $10^{-3}+10^{-1}=0.101$

Округляем значение $18.437 \approx 18.4$ s = 18.4 + 24.9 = 43.3

$$10^{-1}+10^{-1}=0.2$$
 2-й порядок точности $s=18.44+24.9=43.34$ $10^{-2}+10^{-2}=0.02=\Delta s$

Задание 1 (вариант 2) Показать, что предельная относительная погрешность произведения или частного равна сумме предельных относительных погрешностей с точностью до члена второго порядка малости.

Предельной относительной погрешностью (или границей относительной погрешности) δ_x приближённого числа называется отношение предельной абсолютной погрешности Δx к абсолютному значению приближения |x| $\delta_x = \frac{\Delta x}{|x|}$.

Пусть $p=x\cdot y$, а q=x/y. Знаки чисел x и y не влияют на величину ошибки, поэтому для простоты примем x,y>0.

$$\ln p = \ln x + \ln y; \ln q = \ln x - \ln y$$

Принимая во внимание, что $\Delta s = \Delta x + \Delta y$, а также используя приближённую формулу, получим $\delta(x \cdot y) = \delta(x/y) = \delta x + \delta y$, т.е. предельной относитльной погрешностью произведения (частного) можно считать сумму предельных относительных погрешностей сомножителей.

Задание 2 Найти абсолютную и предельную погрешность вычисления произведения для функции $u = \ln(2+t)$

$$\Delta(\ln x) = |(\ln x)'|\Delta x = \frac{\Delta x}{x}, \ x > 0$$

$$\Delta(\ln(2+t)) = |(\ln(2+t))|\Delta t = |\ln(2+t)| \cdot 0.1 = 0.0333$$

$$P = 0.0333$$

Задание 3 С каким шагом нужно составить таблицу значений функции y = f(x), чтобы при использовании линейной интерполяции погрешность не превосходила 0.001?

Вариант 1
$$f(x) = \sin x$$

Интерполирование может применяться для уплотнения таблицы задания функции, т.е. вычисления по исходной таблице новой таблицы с большим числом значений аргумента на прежнем участке его изменения. Эту операцию называют субтабулированием функции.

x	$\sin x$	Δy	$\Delta^2 y$	$\Delta^3 y$
0.150	0.14944	0.00494	0.00000	-0.00001
0.155	0.15438	0.00494	0.00001	0.00001
0.160	0.15932	0.00493	0.00000	
0.165	0.16425	0.00493		
0.170	0.16918			

$$y(x) = y(x_0) + q \cdot y(x_0), \text{ где } q = \frac{x - x_0}{h}a, x_0 = 0.15$$

$$y(x_0) = -0.14944$$

$$h = 0.005$$

$$h = 0.001$$

$$q = \frac{0.151 - 0.15}{0.005} = 0.2$$

$$\sin(0.151) = 0.14944 + 0.2 \cdot 0.00494 = 0.150428$$

$$q = \frac{0.152 - 0.15}{0.005} = 0.4$$

$$\sin(0.152) = 0.14944 + 0.4 \cdot 0.00494 = 0.151416$$

$$\sin(0.153) = 0.14944 + 0.6 \cdot 0.00494 = 0.152404$$

$$\sin(0.154) = 0.14944 + 0.8 \cdot 0.00494 = 0.153392$$

$$\sin(0.155) = 0.14944 + 1 \cdot 0.00494 = 0.15438$$

Вариант 2 $f(x) = \ln(x)$

Задание 4 Для функции, заданной таблично вычислить значение определённого интеграла методом трапеции и сравнить с вычислениями по методу Симпсона. $x=\overline{0,2}$, mar 0.25.

Вариант 1
$$f(x) = \overline{0,2}$$
 $I_{\text{тр}} = (\frac{y_0 + y_8}{2} + y_1 + \dots + y_7) \cdot h = 0.25$

i	x_i	y_0, y_8	$y_1,, y_7$
0	0	1	
1	0.25		0.989616
2	0.5		0.958851
3	0.75		0.908852
4	1		0.841472
5	1.25		0.759188
6	1.5		0.664997
7	1.75		0.562278
8	2	0.454649	
\sum		1.454649	

$$I_{\text{C}} = \frac{h}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + 2y_6 + 4y_7 + y_8) = 1.605354$$