Информация о семестре

Темы:

- 1. Комплексные числа
- 2. Векторные пространства
- 3. Линейные операторы
- 4. Квадратичные формы
- 5. Евклидово пространство

Зачет по теме:

- Контрольная работа на 4 или 5
- Зачтенный типовой расчет

Контрольные работы:

- 1. 1 и 2 темы
- 2. 3 тема
- 3. 4 и 5 темы

Часть І

Лекции 1,2 (9.02.15, 16.02.15) "Комплексные числа"

1 Комплексные числа

- $1. i^2 = -1$ мнимая единица
- 2. Комплексное число
 - (a) z = x + iy алгебраическая форма комплексного числа
 - і. x=Rez дествительная часть числа z
 - іі. y = Imz мнимая часть числа z
- 3. Комплексное число на плоскости [156]
 - (a) $\vec{r} = (x, y)$ радиус-вектор комплексного числа, где:
 - і. x действительная ось
 - іі. у мнимая ось
- 4. Равенство комплексных чисел: $z_1=z_2\Longrightarrow \begin{cases} x_1=x_2\\ y_1=y_2 \end{cases}$

1.1 Арифметические операции над комплексными числами

1.1.1 Сложение и вычетание

1.
$$z_1 \pm z_2 = (x_1 + iy_1) \pm (x_2 + iy_2) = (x_1 \pm x_2) + i(y_1 \pm y_2)$$

2. Примеры:

(a)
$$(3+4i) - (i+1) = 3+4i - i - 1 = 2+3i$$

1.1.2 Умножение

1.
$$z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2) = x_1x_2 + ix_1y_2 + iy_1x_2 + i^2y_1y_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2)$$

2. Примеры:

(a)
$$(3+4i)(i+1) = 3i + 4i^2 + 3 + 4i = 2 + 7i$$

1.1.3 Сопряжение

$$1. \ z = x + iy$$

2.
$$\overline{z} = x - iy$$
 — сопряженное к z

3. Свойства:

(a)
$$\overline{\overline{z}} = z$$

(b)
$$z + \overline{z} = 2x = 2Rez$$

(c)
$$z - \overline{z} = 2iy = 2iImz$$

(d)
$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 - i^2y^2 = x^2 + y^2$$

1.1.4 Деление

1.
$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(y_1x_2 - x_1y_2)}{x_2^2 + y_2^2}$$

2. Примеры:

(a)
$$\frac{3+4i}{i+1} = \frac{(3+4i)(1-i)}{(1+i)(1-i)} = \frac{7+i}{2} = \frac{7}{2} + i\frac{1}{2}$$

1.2 Тригонометрическая и показательная формы комплексного числа

$$1. \ z = x + iy = (x; y) -$$
алгебраическая форма

2.
$$0 \le |z| \le \infty$$
 — модуль числа z

3.
$$\phi = Argz$$
 — аргумент числа z

4.
$$-\pi < \phi \le \pi$$
 — главное значение аргумента

5.
$$\begin{cases} x = |z| \cdot \cos \phi \\ y = |z| \cdot \sin \phi \end{cases}$$

6.
$$z = x + iy = |z| \cos \phi + i|z| \sin \phi$$

7.
$$z=|z|(\cos\phi+i\sin\phi)$$
 — тригонометрическая форма

8.
$$\cos \phi + i \sin \phi = e^{i\phi}$$
 — формула Эйлера

$$9. \,\, z = |z| e^{i\phi} - {
m no}$$
казательная форма

1.2.1 Переход от алгебраической формы к тригонометрической и показательной

1.
$$|z| = \sqrt{x^2 + y^2}$$

2.
$$\begin{cases} \cos \phi = \frac{x}{|z|} \\ \sin \phi = \frac{y}{|x|} \end{cases} \Rightarrow \operatorname{tg} \phi = \frac{y}{x}$$

(a)
$$z = -1 + i\sqrt{3}$$

i.
$$x = -1; y = \sqrt{3}$$

ii.
$$|z| = \sqrt{1+3} = 2$$

і
іі. tg
$$\phi = \frac{y}{x} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
, II четверть $\Rightarrow \phi = \frac{2\pi}{3}$

iv.
$$z = 2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}) = 2e^{i\frac{2\pi}{3}}$$

(b)
$$z = 16 = 16(\cos 0 + i\sin 0) = 16e^{i\cdot 0}$$

i.
$$x = 16; y = 0$$

ii.
$$|z| = 16$$

(c)
$$z = -8i = 8(\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})) = 8e^{-i\frac{\pi}{2}}$$

i.
$$x = 0; y = -8$$

ii.
$$|z| = 8$$

iii.
$$\phi = -\frac{\pi}{2}$$

1.3 Умножение и деление чисел в тригонометрической и показательной формах

- 1. Пусть:
 - (a) $z_1 = |z_1|e^{i\phi_1} = |z_1|(\cos\phi_1 + i\sin\phi_1)$
 - (b) $z_2 = |z_2|e^{i\phi_2} = |z_2|(\cos\phi_2 + i\sin\phi_2)$
- 2. Тогда:

(a)
$$z_1 \cdot z_2 = |z_1| \cdot |z_2| e^{i(\phi_1 + \phi_2)} = |z_1| \cdot |z_2| (\cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2))$$

- і. Доказательство:
 - A. $e^{i\phi_1} \cdot e^{i\phi_2} = (\cos \phi_1 + i \sin \phi_1)(\cos \phi_2 + i \sin \phi_2)$
 - B. $\cos \phi_1 \cos \phi_2 + \cos \phi_1 i \sin \phi_2 + i \sin \phi_1 \cos \phi_1 + i^2 \sin \phi_1 \sin \phi_2$
 - C. $(\cos \phi_1 \cos \phi_2 \sin \phi_1 \sin \phi_2) + i(\cos \phi_1 \sin \phi_2 + \sin \phi_1 \cos \phi_2)$
 - D. $\cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2) = e^{i(\phi_1 + \phi_2)}$

(b)
$$\frac{z_1}{z_2} = \frac{|z_1|e^{i\phi_1}}{|z_2|e^{i\phi_2}} = \frac{|z_1|}{|z_2|}(\cos(\phi_1 - \phi_2) + i\sin(\phi_1 + \phi_2))$$

і. Доказательтво:

A.
$$\frac{e^{i\phi_1}}{e^{i\phi_2}} = \frac{\cos\phi_1 + i\sin\phi_1}{\cos\phi_2 + i\sin\phi_2} = \frac{(\cos\phi_1 + i\sin\phi_1)(\cos\phi_2 - i\sin\phi_2)}{\cos^2\phi_2 - i^2\sin^2\phi_2}$$

B.
$$(\cos \phi_1 \cos \phi_2 + \sin \phi_1 \sin \phi_2) + i(\sin \phi_1 \cos \phi_2 - \cos \phi_1 \sin \phi_2)$$

C.
$$\cos(\phi_1 - \phi_2) + i\sin(\phi_1 - \phi_2) = e^{i(\phi_1 - \phi_2)}$$

(c)
$$z^2 = z \cdot z = |z|^2 e^{i \cdot 2\phi} = |z|^2 (\cos 2\phi + i \sin 2\phi)$$

 $z^3 = z^2 \cdot z = |z|^3 e^{i \cdot 3\phi} = |z|^3 (\cos 3\phi + i \sin 3\phi)$
 $z^n = |z|^n e^{in\phi} = |z|^n (\cos n\phi + i \sin n\phi) - \mathbf{формула} \mathbf{Mуавра}$
 $z^{-1} = \frac{1}{z} = \frac{1 \cdot e^{i0}}{|z|e^{i\phi}} = \frac{1}{|z|} e^{i(0-\phi)} = \frac{1}{|z|} e^{-i\phi} = |z|^{-1} e^{-i\phi}$

1.4 Корень из комплексного числа

1.
$$z = |z|e^{i\phi} = |z|(\cos\phi + i\sin\phi)$$

2.
$$w = \sqrt[n]{z} \iff w^n = z$$

3.
$$w = |w|e^{i\psi} = |w|(\cos\psi + i\sin\psi)$$

4.
$$|w|^n e^{in\psi} = |z|e^{i\phi} \Leftrightarrow \begin{cases} |w|^n = |z| \\ n\psi = \phi + 2\pi k \end{cases} \Rightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\phi + 2\pi k}{n} \end{cases}$$

5.
$$w=\sqrt[n]{z}=\sqrt[n]{|z|}e^{i\frac{\phi+2\pi k}{n}}=\sqrt[n]{|z|}(\cos\frac{\phi+2\pi k}{n}+i\sin\frac{\phi+2\pi k}{n})$$
— формула корня

(a)
$$k = 0$$
: $w_0 = \sqrt[n]{|z|} e^{i\frac{\phi}{n}}$

(b)
$$k = 1$$
: $w_1 = \sqrt[n]{|z|}e^{i(\frac{\phi}{n} + \frac{2\pi}{n})}$

(c)
$$k=2$$
: $w_2=\sqrt[n]{|z|}e^{i(\frac{\phi}{n}+\frac{4\pi}{n})}$

(d)
$$\frac{2\pi k}{n} \ge 2\pi \Rightarrow k \ge n$$

(e)
$$k = n$$
: $w_n = \sqrt[n]{|z|}e^{i(\frac{\phi}{n} + \frac{2\pi n}{n})} = \sqrt[n]{|z|}e^{i\frac{\phi}{n}} = w_0$

(f)
$$k = n + 1$$
: $w_{n+1} = \sqrt[n]{|z|} e^{i(\frac{\phi}{n} + \frac{2\pi}{n})}$

(g)
$$k = 0, 1, ..., n - 1$$

6. Таким образом, различных корней n-ой степени из комплексного числа существует ровно n штук. На плоскости они образуют правильный n-угольник (при n=2 должен получиться отрезок, проходящий через начало координат).

1.4.1 Примеры

1.
$$\sqrt[4]{16} = \sqrt[4]{16e^{i\cdot 0}} = \sqrt[4]{16}e^{i\frac{0+2\pi k}{4}}, k = 0, 1, 2, 3$$

(a)
$$z_0 = 2e^{i0} = 2(\cos 0 + i\sin 0) = 2$$

(b)
$$z_1 = 2e^{i\frac{\pi}{2}} = 2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = 2i$$

(c)
$$z_2 = 2e^{i\pi} = 2(\cos \pi + i\sin \pi) = -2$$

(d)
$$z_3 = 2e^{i\frac{3\pi}{2}} = 2(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}) = -2i$$

2.
$$z^4 - 16 = 0 \Rightarrow z^4 = 16 \Rightarrow z = \sqrt[4]{16}$$

Часть II

Лекции 3,4 (16.02.15, 02.03.15) "Многочлены и их корни"

1.5 Многочлены и их корни

- 1. Пусть:
 - (а) z комплексная переменная
- 2. Тогда:
 - (a) $P_n(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n$, $a_n \neq 0$ комплексный многочлен

- і. a_0 свободный член
- іі. a_n старший коэффициент
- (b) z_0 называется корнем многочлена P(z), если $P(z_0) = 0$

3. Примеры:

(a)
$$z^2+2z+2=0$$

і. $\mathcal{J}=4-8=-4$
іі. $\sqrt{\mathcal{J}}=\pm 2i$
ііі. $z_{1,2}=\frac{-2\pm 2i}{2}=-1\pm i$
(b) $az^2+bz+c=0$
і. $z^2+\frac{b}{a}z+\frac{c}{a}=0$
іі. $(z^2+2\frac{b}{2a}z+(\frac{b}{2a})^2)-(\frac{b}{2a})^2+\frac{c}{a}=0$
іі. $(z+\frac{b}{2a})^2=\frac{b^2}{4a^2}-\frac{c}{a}=\frac{b^2-4ac}{4a^2}=\frac{\mathcal{J}}{4a^2}$
іv. $z+\frac{b}{2a}=\sqrt{\frac{\mathcal{J}}{4a^2}}=\frac{\sqrt{\mathcal{J}}}{2a}$
v. $z=\frac{-b+\sqrt{\mathcal{J}}}{2a}$
vi. $az^2+bz+c=a(z+\frac{b}{2a})^2(\text{при }\mathcal{J}=0)=a(z-z_1)(z-z_2)(\text{при }\mathcal{J}\neq 0)$

1.5.1 Многочлены степени n

- 1. Теорема 1 (теорема Безу): $z=z_0$ корень многочлена $P_n(z) \Longleftrightarrow P_n(z)=(z-z_0)\cdot Q_{n-1}(z)$
- 2. Теорема 2 (основная теорема алгебры многочленов): Любой многочлен $P_n(z)$ с $n \ge 1$ имеет хотя-бы один (вообще говоря, комплексный) корень.
 - (a) Следствие: Количество корней многочлена равно n.

1.5.2 Кратность корня

- 1. Определение: $z=z_0$ корень кратности k многочлена $P_n(z)$ при $k\leq n,$ если $P_n(z)=(z-z_0)^k\cdot Q_{n-k}(z)$ и $Q_{n-k}(z_0)\neq 0.$
- 2. Следствие: Любой многочлен n-ой степени $(n \ge 1)$ имеет ровно n комплексных корней с учетом их кратности.
- 3. Доказательство:

(a)
$$P_n(z)=a_0+a_1z+\ldots+a_nz^n=(z-z_1)^{k_1}\cdot Q_{n-k_1}(z)=(z-z_1)^{k_1}(z-z_2)^{k_2}\cdot Q_{n-(k_1+k_2)}(z)==(z-z_1)^{k_1}(z-z_2)^{k_2}\ldots(z-z_m)^{k_m}\cdot a_n$$
 — разложение многочлена на линейные множители.

4. Примеры:

(a)
$$P(z) = z^8 - 32z^4 + 256 = (z^4 - 16)^2 = (z - 2)^2(z - 2i)^2(z + 2)^2(z + 2i)^2$$

(b)
$$P(z) = z^4 + 4z^3 + 4z^2 - 16 = (z^2 + 2z)^2 - 16 = (z^2 + 2z + 4)(z^2 + 2z - 4)$$

 $P(z) = (z - (-1 + i\sqrt{3}))(z - (-1 - i\sqrt{3}))(z - (-1 + \sqrt{5}))(z - (-1 - \sqrt{5}))$

(c)
$$P(z) = 6z^3 - 14z^2 + 40z - 25$$

і. Подберем корень:

A.
$$a_0 = -25 \Rightarrow p: \pm 1; \pm 5; \pm 25$$

B.
$$a_3 = 6 \Rightarrow q : \pm 1; \pm 2; \pm 3; \pm 6$$

С.
$$z=$$
 одна из дробей $\frac{p}{q}=\frac{5}{6}$ (посчитано через Wolfram
Alpha)

D.
$$\frac{6z^3 - 17z^2 + 40z - 25}{6z - 5} = z^2 - 2z + 5$$

Е.
$$P(z) = (6z - 5)(z^2 - 2z + 5)$$
 — разложение на линейные и квадратичные множители с действительными коэффициентами.

іі. Найдем оставшиеся корни:

A.
$$\Pi = 4 - 20 = -16, \sqrt{\Pi} = \pm 4i$$

B.
$$z = \frac{2 \pm 4i}{2} = 1 \pm 2i$$

С.
$$P(z) = (6z - 5)(z - 1 - 2i)(z - 1 + 2i)$$
 — разложение на линейные множители

1.5.3 Теорема о сопряженных корнях

- 1. Пусть:
 - (a) $P_n(z) = a_0 + a_1 z + ... + a_n z^n$ многочлен степени n с действительными коэффициентами $(a_i \in R, i = 0, ..., n)$
 - (b) $z_0 = x_0 + iy_0$ корень кратности k
- 2. Тогда:
 - (a) $\overline{z_0} = x_0 iy_0$ тоже корень кратности k
- 3. Доказательство:
 - (а) Свойства сопряженных:

i.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

ii.
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

iii.
$$\overline{(z^n)} = (\overline{z})^n$$

- (b) $P_n(z_0) = 0 \Longrightarrow \overline{P_n(z_0)} = \overline{0} = 0$
- (c) $P_n(z) = (z-z_0)(z-\overline{z_0}) \cdot Q_{n-2}(z) = (z^2-2zRez_0+|z_0|^2) \cdot Q_{n-2}(z),$ где Q многочлен с действительными коэффициентами.

4. Примеры:

(a)
$$P(z) = z^4 - 6z^3 + 14z^2 - 22z + 5$$
, $z_0 = 1 + 2i \Longrightarrow \overline{z_0} = 1 - 2i$
i. $(z - z_0)(z + \overline{z_0}) = z^2 - 2\Re z_0 z + |z_0|^2 = z^2 - 2z + 5$
ii. $\frac{z^4 - 6z^3 + 14z^2 - 22z + 5}{z^2 - 2z + 5} = z^2 - 4z + 1$
A. $\Pi = 16 - 4 = 12$
B. $z = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}$

B.
$$z = \frac{z + z + \sqrt{3}}{2} = 2 \pm \sqrt{3}$$

iii. $P(z) = (z^2 - 2z + 5)(z^2 - 4z + 1)$

- iv. $P(z)=(z^2-2z+5)(z-2+\sqrt{3})(z-2-\sqrt{3})$ разложение на линейные и квадратичные множители с действительными коэффициентами.
- v. $P(z)=(z-1-2i)(z-1+2i)(z-2-\sqrt{3})(z-2+\sqrt{3})$ разложение на линейные множители.

Контрольная работа по первой теме

- 1. Вычислить и изобразить результат на комплексной плоскости. В этой задаче арифметические действия над комплексными числами в алгебраической форме.
- 2. Возведение в степень по формуле Муавра.
- 3. Извлечение корня.
- 4. Разложить многочлен на множители. Если подбор корня, то он должен быть целым (чаще всего).

Часть III

Лекции 5,6,7 (02.03.15, 16.03.15, 23.03.15) "Линейные векторные пространства"

2 Линейные векторные пространства

1. Пусть:

- (a) Дано некоторое непустое множество L, элементы которого будем называть векторами и обозначать как $\overline{x}, \overline{y}, \overline{z}, ...$
- (b) Определены две арифметические операции: сложение и умножение

i.
$$\overline{x}, \overline{y} \in L \longrightarrow \overline{x} + \overline{y} \in L$$

ii.
$$\overline{x} \in L \longrightarrow \alpha \cdot \overline{x} \in L$$

- 2. Тогда:
 - (a) Множество L называется векторным или линейным пространством, если выполнены следующие аксиомы:

і.
$$\overline{x} + \overline{y} = \overline{y} + \overline{x}$$
 — коммутативность сложения

іі.
$$\overline{x}+(\overline{y}+\overline{z})=(\overline{x}+\overline{y})+\overline{z}$$
 — ассоциативность сложения

ііі.
$$\exists \overline{0} \in L : \overline{x} + \overline{0} = \overline{x}$$
 — нулевой вектор

iv.
$$\forall \overline{x} \in L \exists (-\overline{x}) \in L : \overline{x} + (-\overline{x}) = \overline{0}$$
 — противоположный вектор

v.
$$1 \cdot \overline{x} = \overline{x}$$

vi.
$$\alpha \cdot (\beta \overline{x}) = (\alpha \beta) \cdot \overline{x}$$
 — ассоциативность умножения

vii.
$$(\alpha + \beta) \cdot \overline{x} = \alpha \cdot \overline{x} + \beta \cdot \overline{x}$$
 — распределительный закон

viii.
$$\alpha(\overline{x}+\overline{y})=\alpha\cdot\overline{x}+\alpha\cdot\overline{y}$$
 — распределительный закон

2.1 Следствия из аксиом векторного пространства

- 1. Нулевой вектор $(\overline{0})$ пространства единственен
- $2. \ \overline{0} = 0 \cdot \overline{x}$
- 3. $\forall \overline{x} \in L$ вектор $(-\overline{x})$ единственен
- 4. $-\overline{x} = (-1) \cdot \overline{x}$

2.2 Примеры векторных пространств

- 1. \mathbb{R} множество действительных чисел с обычными арифметическими операциями сложения и умножения. Выполнение всех восьми аксиом в этой ситуации очевидно.
- 2. $\mathbb{R}_n = \{\overline{x} = (x_1, x_2, ..., x_n)\}$ пространство арифметических векторов
 - (а) Пусть:

i.
$$\overline{x} = (x_1, x_2, ..., x_n)$$

ii.
$$\overline{y} = (y_1, y_2, ..., y_n)$$

(b) Свойства:

i.
$$\overline{x} + \overline{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

ii.
$$\alpha \cdot \overline{x} = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$$

- (с) Аксиомы:
 - i. $3: \overline{0} = (0, 0, ..., 0)$
 - ii. 4: $\overline{x} = (x_1, x_2, ..., x_n), -\overline{x} = (-x_1, -x_2, ..., -x_n)$
 - ііі. Аксиомы 1,2,5-8 очевидны
- (d) Следовательно \mathbb{R}^n пространство арифметических векторов
- 3. Пространства геометрических векторов пространства с обычными операциями сложения векторов и умножения вектора на число.
 - (a) V_1 пространство векторов, параллельных данной прямой L
 - (b) V_2 пространство векторов, параллельных данной плоскости
 - (c) V_3 пространство всех геометрических векторов
- 4. $P_n = \{p(t) = a_0 + a_1t + a_2t + ... + a_nt^n\}$ пространство многочленов степени не выше, чем n, с обычными операциями сложения многочленов и умножения многочлена на число.
 - (а) Пусть:

i.
$$p_1(t) = a_0 + a_1 t + \dots + a_n t^n$$

ii.
$$p_2(t) = b_0 + b_1 t + \dots + b_n t^n$$

(b) Тогда:

i.
$$p_1(t) + p_2(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$$

ii.
$$\lambda p_1(t) = \lambda a_0 + \lambda a_1 t + \dots + \lambda a_n t^n$$

5. M_{mn} — пространство матриц размера $m \cdot n$ с обычными операциями сложения матриц и умножения матрицы на число.

(a)
$$M_{22} = \left\{ X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

(b)
$$M_{23} = \left\{ X = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \right\}$$

6. $C_{[a,b]}$ — пространство функций, непрерывных на отрезке [a,b] с обычными операциями сложения функций и умножения функции на число.

2.3 Базис

- 1. Линейно зависимые и независимые векторные пространства (см. распечатку)
- 2. Полнота системы
 - (а) Пусть:
 - і. L векторное пространство

ii.
$$S = {\overline{e_1}, \overline{e_2}, ..., \overline{e_n}}$$

- (b) Тогда:
 - і. Система S полна, если $\forall \overline{x} \in L, \ \overline{x} = x_1\overline{e_1} + x_2\overline{e_2} + x_m\overline{e_m}$
- 3. Теорема о соотношении
 - (а) Пусть:

і.
$$S_1=\{\overline{e_1},\overline{e_2},...,\overline{e_m}\}$$
 — линейно независимая система

ії.
$$S_2=\{\overline{f_1},\overline{f_2},...,\overline{f_n}\}$$
 — полная система

- (b) Тогда:
 - i. $n \ge m$

2.4 Базис системы

- 1. Пусть:
 - (a) $S=\{\overline{e_1},\overline{e_2},...,\overline{e_n}\}$ линейно независимая и полная система
- 2. Тогда:
 - (a) L базис системы S
 - (b) $\overline{x} = x_1\overline{e_1} + x_2\overline{e_2} + ... + x_n\overline{e_n}$ разложение вектора \overline{x} по базису L
 - (c) $\overline{x} = (x_1, x_2, ..., x_n)$ координаты вектора \overline{x} в базисе L системы S
 - (d) **Размерность пространства** $\dim L = n$ количество векторов в базисе системы

2.4.1 Примеры

1.
$$R_n = {\overline{x} = (x_1, x_2, ..., x_n)}$$

(a)
$$\overline{e_1} = (1, 0, ..., 0)$$

 $\overline{e_2} = (0, 1, ..., 0)$

$$\frac{\dots}{\overline{e_n}} = (0, 0, \dots, 1)$$

(b)
$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix} + \dots + \lambda_n \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

- (c) $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$ система линейно независима
- (d) $\bar{x} = (x_1, x_2, ..., x_n)$ координаты в каноническом базисе
- 2. $P_n = \{p(t) = a_0 + a_1t + \dots + a_nt^n\}$

(a)
$$\overline{e_1} = 1$$

 $\overline{e_2} = t$
 $\overline{e_3} = t^2$
...

$$\frac{\dots}{\overline{e_n}} = t^n$$

(b)
$$\lambda_0 \overline{e_0} + \lambda_1 \overline{e_1} + \dots + \lambda_n \overline{e_n} = \overline{0}$$

 $\lambda_0 \cdot 1 + \lambda_1 \cdot t + \dots + \lambda_n \cdot t^n \equiv 0$

3.
$$M_{22} = \left\{ X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

(a)
$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
 $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

(b) Линейная независимость:

$$\begin{split} &\text{i. } \alpha_1 E_1 + \alpha_2 E_2 + \alpha_3 E_3 + \alpha_4 E_4 = 0 \\ &\text{ii. } \alpha_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \alpha_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0 \\ &\text{iii. } \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Longrightarrow \\ &\Longrightarrow \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0 \Longrightarrow \\ &\Longrightarrow E_1, E_2, E_3, E_4 - \text{ л.н.3.} \end{split}$$

(с) Полнота:

i.
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = aE_1 + bE_2 + cE_3 + dE_4$$

- (d) E_1, E_2, E_3, E_4 канонический базис пространства $M_{22}, \dim M_{22} = 4$
- (e) X = (a, b, c, d) координаты в каноническом базисе

2.5 Теорема

- 1. Пусть:
 - (a) L векторное пространство
 - (b) $S = {\overline{e_1}, \overline{e_2}, ..., \overline{e_n}}$ базис
 - (c) $\overline{x} = (x_1, x_2, ..., x_n)$ $\overline{y} = (y_1, y_2, ..., y_n)$
- 2. Тогда:

(a)
$$\overline{x} + \overline{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

(b)
$$\lambda \overline{x} = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$

2.6 Преобразование координат вектора при замене базиса

1. Пусть:

- (a) L векторное пространство
- (b) $\dim L = 3$
- (c) $S_1=\{\overline{e_1},\overline{e_2},\overline{e_3}\}$ "старый" базис
- (d) $S_2 = \{\overline{f_1}, \overline{f_2}, \overline{f_3}\}$ "новый" базис

(e)
$$\overline{x} = (x_1, x_2, x_3)_{S_1} = (x'_1, x'_2, x'_3)_{S_2}$$

2. Тогда:

(a) Разложим векторы f_1, f_2, f_3 по базису S_1

$$\begin{split} &\text{i. } \overline{f_1} = p_{11}\overline{e_1} + p_{21}\overline{e_2} + p_{31}\overline{e_3} = \begin{pmatrix} p_{11} \\ p_{21} \\ p_{31} \end{pmatrix} \\ &\text{ii. } \overline{f_2} = p_{12}\overline{e_1} + p_{22}\overline{e_2} + p_{32}\overline{e_3} = \begin{pmatrix} p_{12} \\ p_{22} \\ p_{32} \end{pmatrix} \\ &\text{iii. } \overline{f_3} = p_{13}\overline{e_1} + p_{23}\overline{e_2} + p_{33}\overline{e_3} = \begin{pmatrix} p_{13} \\ p_{23} \\ p_{33} \end{pmatrix} \end{split}$$

ii.
$$\overline{f_2} = p_{12}\overline{e_1} + p_{22}\overline{e_2} + p_{32}\overline{e_3} = \begin{pmatrix} p_{12} \\ p_{22} \\ p_{32} \end{pmatrix}$$

iii.
$$\overline{f_3} = p_{13}\overline{e_1} + p_{23}\overline{e_2} + p_{33}\overline{e_3} = \begin{pmatrix} p_{13} \\ p_{23} \\ p_{33} \end{pmatrix}$$

(b) Составим из полученных координат матрицу

і.
$$P = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix}$$
 — матрица перехода из базиса S_1 к базису S_2

(с) Утверждение: Матрица перехода Р невырождена

i.
$$\overline{f_1},\overline{f_2},\overline{f_3}$$
 — линейно независимая система

ii.
$$\alpha_1 \overline{f_1} + \alpha_2 \overline{f_2} + \alpha_2 \overline{f_2} = \overline{0} \iff \alpha_1 = \alpha_2 = \alpha_2 = 0$$

ii.
$$\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = \overline{0} \iff \alpha_1 = \alpha_2 = \alpha_3 = \overline{0}$$
iii. $\alpha_1 \begin{pmatrix} p_{11} \\ p_{21} \\ p_{31} \end{pmatrix} + \alpha_2 \begin{pmatrix} p_{12} \\ p_{22} \\ p_{32} \end{pmatrix} + \alpha_3 \begin{pmatrix} p_{13} \\ p_{23} \\ p_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$\text{iv. } \begin{cases} \alpha_1 p_{11} + \alpha_2 p_{12} + \alpha_3 p_{13} = 0 \\ \alpha_1 p_{21} + \alpha_2 p_{22} + \alpha_3 p_{23} = 0 \\ \alpha_1 p_{31} + \alpha_2 p_{32} + \alpha_3 p_{33} = 0 \end{cases}$$

- v. Линейная однородная система имеет только одно решение только тогда, когда ранг матрицы системы равен числу неизвестных. $rangP = 3 \iff \det P \neq 0$
- (d) Следствие: Способ проверки линейной независимости векторов, записанных в координатной форме.

- і. Составляем матрицу из координат векторов в каком-либо базисе и считаем её ранг.
- іі. Если ранг матрицы равен числу векторов, то система линейно независима. Если ранг матрицы меньше числа векторов, то система линейно зависима.
- (е) Пример:

i.
$$\overline{e_1} = (1, 0, 2, -1)$$

 $\overline{e_2} = (0, -1, 1, 3)$
 $\overline{e_3} = (2, 1, 3, -5)$

A.
$$P = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 2 & 1 & 3 \\ -1 & 3 & -5 \end{pmatrix}$$

B.
$$rangP = 2$$

 $C. \overline{e_1}, \overline{e_2}, \overline{e_3}$ — линейно зависимая система

(f)
$$\overline{x} = x_1\overline{e_1} + x_2\overline{e_2} + x_3\overline{e_3} = x_1'\overline{f_1} + x_2'\overline{f_2} + x_3'\overline{f_3}$$

(g)
$$x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = x_1' \begin{pmatrix} p_{11} \\ p_{21} \\ p_{31} \end{pmatrix} + x_2' \begin{pmatrix} p_{12} \\ p_{22} \\ p_{32} \end{pmatrix} + x_3' \begin{pmatrix} p_{13} \\ p_{23} \\ p_{33} \end{pmatrix}$$

(h)
$$\begin{cases} x_1 = x_1' p_{11} + x_2' p_{12} + x_3' p_{13} \\ x_2 = x_1' p_{21} + x_2' p_{22} + x_3' p_{23} \\ x_1 = x_1' p_{31} + x_2' p_{32} + x_3' p_{33} \end{cases}$$

(i)
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix} \cdot \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} \Longrightarrow X = P \cdot X' \Longrightarrow X' = P^{-1} \cdot X$$

3. Примеры:

(a)
$$f_1 = e^t$$

 $f_2 = e^{2t}$
 $f_3 = e^{3t}$

$$f_3 = e^3$$

i.
$$\alpha_1 \overline{f_1} + \alpha_2 \overline{f_2} + \alpha_3 \overline{f_3} = \overline{0}$$

ii.
$$\begin{aligned} &\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = 0 \\ &\alpha_1 e^t + \alpha_2 e^{2t} + \alpha_3 e^{3t} \equiv 0 \\ &\alpha_1 e^t + 2\alpha_2 e^{2t} + 3\alpha_3 e^{3t} \equiv 0 \\ &\alpha_1 e^t + 4\alpha_2 e^{2t} + 9\alpha_3 e^{3t} \equiv 0 \end{aligned}$$
 iii.
$$\begin{cases} &\alpha_1 + \alpha_2 + \alpha_3 = 0 \\ &\alpha_1 + 2\alpha_2 + 3\alpha_3 = 0 \\ &\alpha_1 + 4\alpha_2 + 9\alpha_3 = 0 \end{cases}$$

iii.
$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 0 \\ \alpha_1 + 2\alpha_2 + 3\alpha_3 = 0 \end{cases}$$

iv.
$$\alpha_1=\alpha_2=\alpha_3=0$$
 — система линейно независима

(b)
$$f_{1} = \sin t$$

 $f_{2} = \cos t$
 $f_{3} = \sin 2t$
 $t \in (0, \pi)$
i. $\alpha_{1}\overline{f_{1}} + \alpha_{2}\overline{f_{2}} + \alpha_{3}\overline{f_{3}} = \overline{0}$
ii. $\alpha_{1}\sin t + \alpha_{2}\cos t + \alpha_{3}\sin 2t \equiv 0$
A. $t = \frac{\pi}{3}$: $\alpha_{1} \cdot \frac{\sqrt{3}}{2} + \alpha_{2} \cdot \frac{1}{2} + \alpha_{3} \cdot \frac{\sqrt{3}}{2} = 0$
B. $t = \frac{\pi}{2}$: $\alpha_{1} \cdot 1 + \alpha_{2} \cdot 0 + \alpha_{3} \cdot 0 = 0$
C. $t = \frac{2\pi}{3}$: $\alpha_{1} \cdot \frac{\sqrt{3}}{2} + \alpha_{2} \cdot (-\frac{1}{2}) + \alpha_{3} \cdot (-\frac{\sqrt{3}}{2}) = 0$

iii. $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -\sqrt{3}\alpha_3 \\ \alpha_3 \end{pmatrix} = \alpha_3 \begin{pmatrix} 0 \\ -\sqrt{3} \\ 1 \end{pmatrix}$

iv. $0 \cdot \sin t - \sqrt{3} \cos t + 1 \cdot \sin 2t \not\equiv 0$ — линейно независимая система

Часть IV

Лекции 8,9 (30.03.15, 06.04.15) "Функции на линейных векторных пространствах"

3 Линейные операторы

- 1. Пусть:
 - (a) V векторное пространство
 - (b) $\hat{A}: V \longrightarrow V$
 - (c) $\vec{x} \curvearrowright^{\hat{A}} \vec{y}$
 - (d) $\vec{y} = \hat{A}x$
 - і. \vec{y} образ вектора \vec{x}
 - іі. \vec{x} прообраз вектора \vec{y}
- 2. Тогда:
 - (a) \hat{A} векторный оператор, если:

i.
$$\hat{A}(\vec{x_1} + \vec{x_2}) = \hat{A}\vec{x_1} + \hat{A}\vec{x_2}$$

ii.
$$\hat{A} = (\lambda \vec{x}) = \lambda \hat{A} \vec{x}$$

3.1 Задание линейного оператора с помощью матрицы

- 1. Пусть:
 - (a) V векторное пространство размерности 3
 - (b) $S = {\vec{e_1}, \vec{e_2}, \vec{e_3}}$ базис
 - (c) \hat{A} линейный оператор
- 2. Тогда:
 - (a) Найдем образ базисных векторов при действии оператора \hat{A} :

(b)
$$\begin{cases} \hat{A}\vec{e_1} = a_{11}\vec{e_1} + a_{21}\vec{e_2} + a_{31}\vec{e_3} \\ \hat{A}\vec{e_1} = a_{12}\vec{e_1} + a_{22}\vec{e_2} + a_{32}\vec{e_3} \\ \hat{A}\vec{e_1} = a_{13}\vec{e_1} + a_{23}\vec{e_2} + a_{33}\vec{e_3} \end{cases}$$

(c)
$$\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3}$$

(d)
$$\hat{A}\vec{x} = x_1\hat{A}\vec{e_1} + x_2\hat{A}\vec{e_2} + x_3\hat{A}\vec{e_3} =$$

$$= x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} + x_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{11}x_1 & a_{12}x_2 & a_{13}x_3 \\ a_{21}x_1 & a_{22}x_2 & a_{23}x_3 \\ a_{31}x_1 & a_{32}x_2 & a_{33}x_3 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

(e)
$$\vec{y} = \hat{A}\vec{x}$$
, $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

3.2 Примеры операторов

1. $\hat{0}\vec{x} = \vec{0}$ — нулевой оператор

(a)
$$0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- (b) $Im\hat{0} = {\vec{0}}, rang\hat{0} = 0$
- (c) $Ker\hat{0} = V$, $defect\hat{0} = \dim V$
- (d) $\hat{0}^{-1}$ не существует
- 2. $\hat{I}\vec{x} = \vec{x}$ тождественный оператор

(a)
$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) $Im\hat{I} = V$, $rang\hat{I} = \dim V$

(c)
$$Ker\hat{I} = {\vec{0}}, defect\hat{I} = 0$$

(d)
$$\hat{I}^{-1} = \hat{I} (E^{-1} = E)$$

3. $\hat{\Lambda}\vec{x}=\lambda\vec{x}$ — оператор подобия

(a)
$$\Lambda = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

(b)
$$\lambda = 0 - \text{cm. } 1$$

(c)
$$\lambda \neq 0 - \text{cm. } 2$$

і.
$$\hat{\Lambda}^{-1}$$
 существует

ii.
$$\Lambda^{-1} = \begin{pmatrix} \frac{1}{\lambda} & 0 & 0\\ 0 & \dots & 0\\ 0 & 0 & \frac{1}{\lambda} \end{pmatrix}$$

4. $\hat{T_{\alpha}}$ — оператор поворота на угол α на плоскости вокруг начала координат

(a)
$$\hat{T}_{\alpha}\vec{i} = \cos\alpha \cdot \vec{i} + \sin\alpha \cdot \vec{j} = \begin{pmatrix} \cos\alpha\\ \sin\alpha \end{pmatrix}$$

(b)
$$\hat{T}_{\alpha}\vec{j} = -\sin\alpha \cdot \vec{i} + \cos\alpha \cdot \vec{j} = \begin{pmatrix} -\sin\alpha \\ \cos\alpha \end{pmatrix}$$

(c)
$$T = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

(d)
$$Im\hat{T}_{\alpha} = V$$
, $rang\hat{T}_{\alpha} = 2$

(e)
$$Ker\hat{T}_{\alpha} = \{\vec{0}\}, defect\hat{T}_{\alpha} = 0$$

(f)
$$\hat{T}_{\alpha}^{-1}$$
 существует (det $T_{\alpha}^{-1} = 1$)

(g)
$$T_{\alpha}^{-1} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$
 — оператор поворота по часовой стрелке

5.
$$\hat{A}\vec{x} = [\vec{a}, \vec{x}], \ \vec{a} = (1, 0, -1)$$

(a)
$$\hat{A}\vec{i} = [\vec{a}, \vec{i}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -1 \\ 1 & 0 & 0 \end{vmatrix} = (0, -1, 0)$$

(b)
$$\hat{A}\vec{j} = [\vec{a}, \vec{j}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{vmatrix} = (1, 0, 1)$$

(c)
$$\hat{A}\vec{k} = [\vec{a}, \vec{k}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{vmatrix} = (0, -1, 0)$$

(d)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

- (е) Способ 1: Исходя из геометрических свойств векторного произведения
 - і. $Ker \hat{A} = \{ \vec{x} = \alpha \vec{a} \}$ векторы, коллинеарные вектору \vec{a}
 - ii. $defect\hat{A} = 1$
 - і
ііі. $Im\hat{A} = \{\vec{y} \in V_3 : (\vec{y}, \vec{a}) = 0\}$ векторы, перпендикулярные вектору \vec{a}
 - iv. $rang\hat{A} = 2$
- (f) Способ 2: Найдщем ядро и образ с помощью матрицы оператора \hat{A}

i.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

ii. $Ker \hat{A}: \hat{A}\vec{x} = 0$

A.
$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

B. $rang\hat{A} = 2$

$$\text{C. } \begin{cases} x_1 = -\alpha \\ x_2 = 0 \\ x_3 = \alpha \end{cases} ; \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\alpha \\ 0 \\ \alpha \end{pmatrix} = \alpha \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \alpha \vec{a} - \text{ядро}$$

- D. $A\vec{x} = \vec{0}$
- iii. $Im\hat{A}: \vec{y} = \hat{A}\vec{x}$

A.
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
B.
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1 \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} = (x_1 + x_3) \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- C. $Im\hat{A} = \{\vec{y} = \alpha\vec{e_1} + \beta\vec{e_2}\}, \vec{e_1}, \vec{e_2} \perp \vec{a}$
- iv. $Ker \hat{A} = \{\vec{x} = \alpha \vec{a}\} \Longrightarrow \hat{A}^{-1}$ не существует
- (g) $\hat{D}p(t) = p'(t), p(t) \in P_n$

i.
$$Ker\hat{D} = \{p(t) \equiv C\}, defect\hat{D} = 1$$

ii.
$$Im\hat{D} = \{g(t) \in P_{n-1}\}, rangP_{n-1} = n$$

і
іі.
$$Ker \hat{D} = \{p(t) \equiv C\} \Longrightarrow \hat{D}^{-1}$$
 не существует

(h) \hat{A} — отражение относительно y = 2x на плоскости

i.
$$A^2 = E \Longrightarrow A^{-1} = A \Longrightarrow \hat{A}^{-1} = \hat{A}$$

3.3 Преобразование матрицы линейного оператора при замене базиса

1. Пусть:

- (a) V векторное пространство
- (b) $S_1 = \{\vec{e_1},...,\vec{e_n}\}$ "старый" базис
- (c) $S_2 = \{\vec{f_1},...,\vec{f_n}\}$ "новый" базис
- (d) \hat{A} линейный оператор
- (e) A_x матрица линейного оператора в базисе S_x
- (f) P матрица перехода от S_1 к S_2

2. Тогда:

(a)
$$\vec{y} = \hat{A}\vec{x}$$

(b)
$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}_{S_1} = \begin{pmatrix} y_{1'} \\ y_2' \\ y_3' \end{pmatrix}_{S_2}$$

(c)
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = A_1 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

(d)
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = P \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = P \begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix}$$

(e)
$$P\begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = A_1 P\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$$

(f)
$$\begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = P^{-1} A_1 P \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$$

(g)
$$A_2 = P^{-1}A_1P$$

3.4 Ядро и образ линейного оператора

- 1. $Im\hat{A}=\{\vec{y}\in V:\exists \vec{x}\in V, \vec{y}=\hat{A}\vec{x}\}$ образ оператора
- 2. $Ker \hat{A} = \{\vec{x} \in V : \hat{A}\vec{x} = \vec{0}\}$ ядро оператора
- 3. Утверждение: ядро и образ оператора являются подпространствами векторного пространства V.
- 4. dim $Im\hat{A} = rangA$
- 5. dim $Ker \hat{A} = defect \hat{A}$ дефект оператора
- 6. $rang\hat{A} + defect\hat{A} = \dim V$

3.5 Действия с линейными операторами

- 1. Пусть:
 - (a) V векторное пространство
 - (b) \hat{A} , \hat{B} линейные операторы
- 2. Тогда:

(a)
$$\hat{C} = \alpha \hat{A}$$

i.
$$\hat{C}\vec{x} = \alpha \hat{A}\vec{x}$$

іі. $C = \alpha A$ в любом базисе

(b)
$$\hat{C} = \hat{A} \pm \hat{B}$$

i.
$$\hat{C}\vec{x} = \hat{A}\vec{x} \pm \hat{B}\vec{x}$$

іі. $C = A \pm B$ в любом базисе

(c)
$$\vec{x} \longrightarrow^{\hat{A}} \vec{y} \longrightarrow^{\hat{B}} \vec{z}, \vec{x} \longrightarrow^{\hat{C}} \vec{z}$$

i.
$$\hat{C} = \hat{B} \cdot \hat{A}$$

ii.
$$\hat{C}\vec{x} = \hat{B}(\hat{A}\vec{x})$$

ііі. $C = B \cdot A$ в любом базисе

(d)
$$\vec{x} \longrightarrow^{\hat{A}} \vec{y} \longrightarrow^{\hat{A}} \vec{z}, \vec{x} \longrightarrow^{\hat{C}} \vec{z}$$

i.
$$\hat{C}\vec{x} = \hat{A}^2\vec{x}$$

ii.
$$\hat{C} = \hat{A}^n : \hat{C}\vec{x} = \hat{A}(\hat{A}(...(\hat{A}\vec{x})))$$

ііі.
$$C = A^n$$
 в любом базисе

3. Примеры:

(a)
$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

i.
$$A^n = \begin{pmatrix} \cos n\alpha & -\sin n\alpha \\ \sin n\alpha & \cos n\alpha \end{pmatrix}$$

(b) \hat{A} - отражение относительно y = 2x

i.
$$A = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

ii.
$$A^{2n} = \hat{I} \Longrightarrow A^{2n} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

iii.
$$A^{2n+1} = \hat{A} \Longrightarrow A^{2n+1} = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

3.6 Обратные операторы

- 1. $y=2x\longrightarrow x=\frac{y}{2}$ обратная функция
- $2.~\hat{A}^{-1}$ обратный оператор

(a)
$$\hat{A}^{-1}(\hat{A}\vec{x}) = \hat{A}(\hat{A}^{-1}\vec{x}) = \vec{x}, \, \forall \vec{x} \in V$$

- (b) $\hat{A}^{-1} \cdot \hat{A} = \hat{A} \cdot \hat{A}^{-1} = \hat{I}$
- 3. Критерии существования обратного линейного оператора:
 - (a) В терминах матрицы: Оператор \hat{A}^{-1} существует тогда и только тогда, когда **матрица** оператора \hat{A} в любом базисе невырождена. $\det A \neq 0$
 - і. Матрицей обратного оператора является матрица A^{-1} .
 - (b) В терминах ядра: Оператор \hat{A}^{-1} существует тогда и только тогда, когда **ядро** оператора \hat{A} состоит только из нулевого вектора $\vec{0}$. (defect A = 0)
 - (c) В терминах образа: Оператор \hat{A}^{-1} существует тогда и только тогда, когда **образ** оператора \hat{A} совпадает с самим пространством $V.\ (rang A = \dim V)$

3.7 Собственные значения и собственные векторы

- 1. Ненулевой вектор \vec{x} называется **собственным вектором** линейного оператора \hat{A} , соответствующим собственному значению λ , если выполняется равенство $\hat{A}\vec{x}=\lambda\vec{x},\ \vec{x}\neq\vec{0}$
 - (a) Геометрический смысл: $\vec{x} \curvearrowright^{\hat{A}} \lambda \vec{x}$ Под действием оператора вектор переходит в коллинеарный самому себе с коэффициентом пропорциональности λ .
- 2. Пусть:
 - (a) A матрица линейного оператора \hat{A} в некотором базисе S
- 3. Тогда:

(a)
$$A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

(b)
$$A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(c)
$$(A-\lambda E)\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
 — матричная запись линейной однородной системы

- (d) Линейная однородная система имеет ненулевые решения тогда и только тогда, когда ранг матрицы системы меньше, чем число неизвестныъ.
- (e) $rang(A \lambda E) < n \Longrightarrow det(A \lambda E) = 0$
- (f) $|A \lambda E| = 0$ характеристическое уравнение, ищем λ
- (g) $(A \lambda E)\vec{x} = \vec{0}$ ищем собственный вектор \vec{x}
- 4. Пример:

(a)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(b) Нахождение собственных значений

i.
$$\begin{vmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 + 2 - 3(1 - \lambda) = 1 - 3\lambda + 3\lambda^2 - \lambda^3 + 2 - 3 + 3\lambda = 3\lambda^2 - \lambda^3 = 2\lambda^2(3 - \lambda) = 0$$

ii.
$$\lambda = 0$$
, $\lambda = 3$

(с) Нахождение собственных векторов:

іі.
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ііі. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $rang = 1$

іv. $x_2 = a, x_3 = b$ — свободные переменные v. $x_1 + x_2 + x_3 = 0$

vi. $x_1 = -x_2 - x_3 = -a - b$

vii. $\vec{x} = \begin{pmatrix} -a - b \\ a \\ b \end{pmatrix} = a \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $a^2 + b^2 \neq 0$

viii. $\lambda = 3$: $(A - 3E)\vec{x} = \vec{0}$

ix. $\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$\begin{array}{l} \mathrm{x.} \ \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} -2 & 1 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix} \sim \\ \sim \begin{pmatrix} -2 & 1 & 1 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} -2 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \, rang = 2 \\ \mathrm{xi.} \ x_3 = a - \mathrm{cbofodhas} \, \mathrm{переменнаs} \\ \mathrm{xii.} \ \begin{cases} -2x_1 + x_2 + x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases} \end{array}$$

xii.
$$\begin{cases} -x_1 + x_2 + x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases}$$

xiii.
$$x_2 = x_3 = a$$

xiv.
$$-2x_1 = -x_2 - x_3 = -2a$$
, $x_1 = a$

xv.
$$\vec{x} = \begin{pmatrix} a \\ a \\ a \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ a \neq 0$$

- 5. Оператор \hat{A} называется оператором **простого типа**, если из его собственных векторов можно составить базис пространства V.
 - (а) В базисе из собственных векторов матрица оператора имеет диагональный вид, причем на диагонали записываются собственные значения, соответствующие базисным векторам.
 - (b) Базис из собственных векторов:

$$\vec{e_1} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \, \vec{e_2} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \, \vec{e_3} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

(c)
$$P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\det P = 3 \neq 0 \Longrightarrow rangP = 3$

$$\implies \vec{e_1}, \vec{e_2}, \vec{e_3} - \text{базис пространства } V^3$$
(d) $A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

(d)
$$A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

- (e) $\hat{A} = \hat{A}_1 \cdot \hat{A}_2$ последовательное выполнение двух операторов:
 - і. \hat{A}_1 проекция векторов на ось x=y=z
 - іі. \hat{A}_2 оператор подобия с коэффициентом $\lambda=3$
- 6. Утверждение:
 - (а) Пусть:
 - i. $\vec{x_1}, \vec{x_2}$ собственные векторы линейного оператора \hat{A} , соответствующие различным собственным значениям λ .

ii.
$$\hat{A}\vec{x_1} = \lambda_1\vec{x_1}$$

 $\hat{A}\vec{x_2} = \lambda_2\vec{x_2}$

- (b) Тогда:
 - і. Векторы $\vec{x_1}, \vec{x_2}$ линейно независимы
- (с) Доказательство:

i.
$$a\vec{x_1} + b\vec{x_2} = \vec{0}$$

ii.
$$\hat{A}(a\vec{x_1} + b\vec{x_2}) = \hat{A}\vec{0}$$

iii.
$$a\hat{A}\vec{x_1} + b\hat{A}\vec{x_2} = \vec{0}$$

iv.
$$a\lambda_1\vec{x_1} + b\lambda_2\vec{x_2} = \vec{0}$$

v.
$$\begin{cases} a\vec{x_1} + b\vec{x_2} = \vec{0} \\ a\lambda_1\vec{x_1} + b\lambda_2\vec{x_2} = \vec{0} \end{cases}$$

A.
$$I - I \cdot \lambda_1$$
: $b(\lambda_2 - \lambda_1)\vec{x_2} = \vec{0}, b = 0$

B.
$$II - I\lambda_2$$
: $a(\lambda_1 - \lambda_2)\vec{x_1} = \vec{0}, a = 0$

vi. $a=b=0 \Longrightarrow \vec{x_1}, \vec{x_2}$ линейно независимы

3.8 Исследование оператора

- 1. Пусть:
 - (a) \hat{A} линейный оператор в векторном пространстве V
- 2. Тогда:
 - (a) Построить матрицу оператора в каноническом базисе пространства ${\cal V}$
 - (b) Найти образ вектора $\vec{x} = (...)$
 - (c) Найти образ $Im\hat{A}$ оператора и его ранг $rang\hat{A}$
 - (d) Найти ядро $Ker\hat{A}$ оператор и его дефект $defect\hat{A}$
 - (e) Доказать существование обратного оператора \hat{A}^{-1} и найти его
 - (f) Найти собственные значения и собственные вектора оператора \hat{A}
 - (g) Показать, является ли оператор \hat{A} оператором простого типа
- 3. Пример:
 - (a) \hat{A} проекция на плоскость xOz
 - (b) Матрица в базисе $\{\vec{i},\vec{j},\vec{k}\}$: координаты образов базисных векторов, записанных по столбикам

i.
$$\hat{A}\vec{i} = \vec{i} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

ii.
$$\hat{A}\vec{j} = \vec{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

iii.
$$\hat{A}\vec{k} = \vec{k} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

iv.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(c) Найти образ $\vec{x} = (1, 2, 3)$

i.
$$\vec{y} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

(d) Ранг и образ (I способ):

і. Образ оператора $Im\hat{A} = \{\vec{y} = y_1\vec{i} + y_3\vec{k}\}$ — векторы, параллельные плоскости xOz

іі. Ранг оператора $rang \hat{A} = 2$ — размерность образа

(e) Ранг и образ (II способ):

i.
$$\vec{y} = A\vec{x}$$

ii.
$$\vec{y} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} =$$

$$= x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = x_1 \vec{i} + x_3 \vec{k}$$

iii.
$$Im\hat{A} = \{\vec{y} = x_1\vec{i} + x_3\vec{k}\}, rang\hat{A} = 2$$

(f) Ядро и дефект (I способ):

і.
$$Ker \hat{A} = \{\vec{x} = x_2 \vec{j}\}$$
 — векторы, перпендикулярные плоскости xOz

іі.
$$defect \hat{A} = 1$$
 — размерность ядра

(g) Ядро и дефект (II способ):

i.
$$A\vec{x} = \vec{0}$$

ii.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ііі. $x_2 = c$ — свободная переменная

iv.
$$x_1 = 0, x_3 = 0$$

v.
$$\vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = c\vec{j}$$

(h) Обратный оператор \hat{A}^{-1}

і. $det A = 0 \Longrightarrow A^{-1}$ не существует $\Longrightarrow \hat{A}^{-1}$ не существует

(i) Собственные значения и векторы (I способ):

i.
$$\hat{A}\vec{x} = \vec{x} \Longrightarrow \lambda = 1$$

 $\vec{x} = x_1\vec{i} + x_3\vec{k}, x_1^2 + x_3^2 \neq 0$

ii.
$$\hat{A}\vec{x} = \vec{0} = 0\vec{x}, \ \lambda = 0$$

 $\vec{x} = x_2\vec{j}, \ x_2 \neq 0$

- (ј) Собственные значения и векторы (ІІ способ): формально
- (k) Собственные значения и векторы (III способ): из диагонали матрицы

i.
$$\lambda = 1$$
: $\vec{x} = x_1 \vec{i} + x_3 \vec{k}$

ii.
$$\lambda = 0$$
: $\vec{x} = x_2 \vec{j}$

(l) \hat{A} — оператор простого типа

і.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 — в пространстве V^3

ii.
$$Im\hat{A}: \vec{y} = A\vec{x}$$

iii.
$$\vec{y} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

iv.
$$\vec{y} = (x_1 + x_2 + x_3) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

v.
$$Im\hat{A} = \{\vec{y} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\}, rang\hat{A} = 1$$

vi.
$$Ker \hat{A} : \hat{A}\vec{x} = \vec{0}$$

vii.
$$A\vec{x} = \vec{0} \longleftrightarrow (A - \lambda E)\vec{x} = \vec{0}$$

viii.
$$Ker \hat{A} = \{\vec{x} = a \begin{pmatrix} -1\\1\\0 \end{pmatrix} + b \begin{pmatrix} -1\\0\\1 \end{pmatrix} \}$$

Подготовка к контрольной работе

3.9 Линейный оператор в пространстве матриц

- 1. Дано:
 - (a) M_{22}
 - (b) $M = \{X \in M_{22} : X^T = X\}$ подпространство симметрических матриц

(c)
$$\hat{A}X = B^T X B$$
, $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$

2. Задание:

- (a) Доказать, что \hat{A} является оператором на подпространстве M
- (b) Найти матрицу оператора в каком-нибудь базиме попространства
- (c) Найти ядро и образ оператора \hat{A}
- (d) Обратим ли оператор \hat{A} . если да, найти \hat{A}^{-1}
- (e) Найти собственные значения и собственные векторы оператора \hat{A}
- (f) Является ли оператора \hat{A} оператором простого типа. Если да, то показать оператор в базисе собственных векторов.

3. Решение:

- (a) Доказать, что \hat{A} линейный оператор
 - i. $\hat{A}: M \to M$
 - іі. Свойства линейности:

A.
$$\hat{A}(X_1 + X_2) = \hat{A}X_1 + \hat{A}X_2$$

B.
$$\hat{A}(\lambda X) = \lambda \hat{A}X$$

ііі. Проверка:

A.
$$X = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

B.
$$\hat{A}X = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} a & b \\ -a+b & -b+c \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} a & -a+b \\ -a+b & a-2b+c \end{pmatrix} \Rightarrow \hat{A}: M \to M$$

C.
$$\hat{A}(X_1 + X_2) = B^T(X_1 + X_2)B =$$

= $B^T X_1 B + B^T X_2 B = \hat{A}X_1 + \hat{A}X_2$

D.
$$\hat{A}(\lambda X) = B^T(\lambda X)B = \lambda B^T XB = \lambda \hat{A}X$$

- E. Вывод: \hat{A} линейный оператор на M
- (b) Выберем базис подпространства M и построим матрицу оператора в этом базисе

i.
$$a = 1, b = c = 0, E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

ii.
$$a = 0, b = 1, c = 0, E_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

iii.
$$a = 0, b = 0, c = 1, E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

iv.
$$X = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = aE_1 + bE_2 + cE_3 = (a,b,c)$$
 — координаты в базисе E_1, E_2, E_3 .

v.
$$\hat{A}E_1 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \sim (1, -1, 1)$$

 $\hat{A}E_2 = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \sim (0, 1, 2)$
 $\hat{A}E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \sim (0, 0, 1)$

- (с) Ядро и образ:
 - i. $Ker \hat{A}: \hat{A}X = 0$

ii
$$AX = 0$$

ii.
$$AX = 0$$

iii.
$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
iv.
$$\begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}$$

iv.
$$\begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}$$

v.
$$Ker \hat{A} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

- vi. $defect\hat{A} = \dim Ker\hat{A} = 0$ по определению
- vii. $rang \hat{A} = rang A = \dim M defect \hat{A} = 3$
- viii. $\dim M = rang\hat{A} \Longrightarrow Im\hat{A} = M$
- (d) Обратимость оператора
 - і. $\dim A = 1 \neq 0 \Longrightarrow \hat{A}^{-1}$ существует
 - іі. $A^{-1} = \dots -$ матрица обратного оператора
- (е) Собственные значения и собственные векторы

i.
$$|A - \lambda E| = 0$$

ii.
$$\begin{vmatrix} 1 - \lambda & 0 & 0 \\ -1 & 1 - \lambda & 0 \\ 1 & -2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 = 0$$

Часть V

Лекция 10 (20.04.15) "Билинейные и квадратичные формы"

- Билинейные и квадратичные формы
 - 1. Пусть:
 - (a) V векторное пространство

(b)
$$\hat{A}:(x,y)\longrightarrow \mathbb{R}$$

(c)
$$\hat{A}(\vec{x}, \vec{y}) = c$$

2. Тогда:

(a)
$$\hat{A}(\vec{x_1} + \vec{x_2}, \vec{y}) = \hat{A}(\vec{x_1}, \vec{y}) + \hat{A}(\vec{x_2}, \vec{y})$$

 $\hat{A}(\lambda \vec{x}, \vec{y}) = \lambda \hat{A}(\vec{x}, \vec{y})$

(b)
$$\hat{A}(\vec{x}, \vec{y_1} + \vec{y_2}) = \hat{A}(\vec{x}, \vec{y_1}) + \hat{A}(\vec{x}, \vec{y_2})$$

 $\hat{A}(\vec{x}, \lambda \vec{y}) = \lambda \hat{A}(\vec{x}, \vec{y})$

- 3. Пример в пространстве $V^3:(\vec{x},\vec{y})$ скалярное произведение
- 4. Определение: Билинейная форма \hat{A} называется **симметрической**, если $\hat{A}(\vec{x},\vec{y}) = \hat{A}(\vec{y},\vec{x}), \, \forall \vec{x},\vec{y}$. Таким образом, симметричная билинейная форма имеет симметричную матрицу в любом базисе.

4.1 Координатная и векторно-матричная запись билинейной формы

- 1. Пусть:
 - (a) V векторное пространство
 - (b) $\hat{A}(\vec{x}, \vec{y})$ билинейная форма
- 2. Тогда:
 - (a) $S = {\vec{e_1}, \vec{e_2}, \vec{e_3}}$ базис V
 - (b) Вычислим значение билинейной формы для каждой пары базисных векторов: $\hat{A}(\vec{e_i}, \vec{e_j}) = a_{ij}$ и составим хиз полученных значений матрицу, которая называется матрицей билинейной формы в базисе S.

(c)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

i.
$$\vec{x} = y_1 \vec{e_1} + y_2 \vec{e_2} + y_3 \vec{e_3} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
ii. $\vec{y} = y_1 \vec{e_1} + y_2 \vec{e_2} + y_3 \vec{e_3} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

ii.
$$\vec{y} = y_1 \vec{e_1} + y_2 \vec{e_2} + y_3 \vec{e_3} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

(d)
$$\hat{A}(x_1\vec{e_1} + x_2\vec{e_2} + x_3\vec{e_3}, y_1\vec{e_1} + y_2\vec{e_2} + y_3\vec{e_3}) =$$

$$= x_1y_1a_{11} + x_1y_2a_{12} + x_1y_3a_{13} +$$

$$+ x_2y_1a_{21} + x_2y_2a_{22} + x_2y_3a_{23} +$$

$$+ x_3y_1a_{31} + x_3y_2a_{32} + x_3y_3a_{33} =$$

$$= (x_1 \quad x_2 \quad x_3) A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

(e)
$$\hat{A}(\vec{x}, \vec{y}) = X^T A Y$$
 — векторно-матричная запись

(f)
$$\hat{A}(\vec{x}, \vec{y}) = \sum_{i,j=1}^{n} a_{ij}$$
 — координатная запись

3. Пример:

(a) В пространстве V^3 : $\hat{A}(\vec{x}, \vec{y}) = (\vec{x}, \vec{y})$ — скалярное произведение

i.
$$A = E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ii. $(\vec{x}, \vec{y}) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$

4.
$$\phi(\vec{x}) = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} A \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = X^T A Y = \sum_{i,j=1}^n a_{ij} x_i y_j$$

4.2 Преобразование матрицы билинейной формы при замене базиса

1. Пусть:

- (a) V векторное пространство
- (b) $\hat{A}(\vec{x}, \vec{y})$ билинейная форма
- (c) $S_1 = {\vec{e_1}, \vec{e_2}, \vec{e_3}}$ старый базис
- (d) $S_2 = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ новый базис
- (e) A_1 матрица билинейной формы в старом базисе
- (f) A_2 матрица билинейной формы в новом базисе
- (g) P матрица перехода от S_1 к S_2

2. Тогда:

(a)
$$\vec{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}_{S_1} = \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix}_{S_2}, \ \vec{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}_{S_1} = \begin{pmatrix} y_1' \\ \dots \\ y_n' \end{pmatrix}_{S_2}$$

- (b) $\hat{A}(\vec{x}, \vec{y}) = X^T A_1 Y = (X')^T A_2 Y$
- (c) X = PX', Y = PY'
- (d) $\hat{A}(\vec{x}, \vec{y}) = (PX')^T A_1(PY') = (X')^T P^T A_1 PY'$
- (e) $A_2 = P^T A_1 P$ формула преобразования матрицы билинейной формы

4.3 Квадратичная форма

- 1. Определение:
 - (а) Пусть:
 - і. $\hat{A}(\vec{x}, \vec{y})$ симметричная билинейная форма
 - (b) Тогда:
 - і. **Квадратичной формой**, порожденной симметрической билинейной формой \hat{A} , называется функция $\phi(\vec{x}) = \hat{A}(\vec{x}, \vec{x})$
 - (с) Пример:

i.
$$\hat{A}(\vec{x}, \vec{y}) = |\vec{x}| \cdot |\vec{y}| \cdot \cos \phi = x_1 y_1 + x_2 y_2 + x_3 y_3$$

A. $\phi(\vec{x}) = \hat{A}(\vec{x}, \vec{x}) = x_1^2 + x_2^2 + x_3^2 = |\vec{x}|^2$

2. Утверждение: Между симметричными билинеными формами и квадратичными формами в векторном пространстве V существует взаимно однозначное соответствие.

(a)
$$\phi(\vec{x} + \vec{y}) = \hat{A}(\vec{x} + \vec{y}, \vec{x} + \vec{y}) =$$

= $\hat{A}(\vec{x}, \vec{x}) + \hat{A}(\vec{x}, \vec{y}) + \hat{A}(\vec{y}, \vec{x}) + \hat{A}(\vec{y}, \vec{y}) =$
= $\phi(\vec{x}) + \phi(\vec{y}) + 2\hat{A}(\vec{x}, \vec{y})$

(b)
$$\hat{A}(\vec{x}, \vec{y}) = \frac{\phi(\vec{x} + \vec{y}) - \phi(\vec{x}) - \phi(\vec{y})}{2}$$

3.
$$\phi(\vec{x})=\begin{pmatrix}x_1&\dots&x_n\end{pmatrix}A\begin{pmatrix}x_1\\\dots\\x_n\end{pmatrix}=\sum_{i,j=1}^na_{ij}x_ix_j$$
 — векторно-матричная

и координатная запись квадратичной формы.

4. Примеры:

(a)
$$\phi(\vec{x}) = x_1^2 + 3x_2^2 - 4x_3^2 4x_1x_2 - 6x_1x_3$$

i.
$$\phi(\vec{x}) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 1 & 2 & -3 \\ 2 & 3 & 0 \\ -3 & 0 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} \alpha + 1 & 1 - 2\alpha & -1 \\ 1 - 2\alpha & 6\alpha & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

i.
$$\phi(\vec{x}) = (\alpha + 1)x_1^2 + 6\alpha x_2^2 + x_3^2 + 2(1 - 2\alpha)x_1x_2 - 2x_1x_3 - 2x_2x_3$$

4.4 Канонический вид квадратичной формы

- 1. Определение: Если квадратичная форма представлена в виде $\phi(\vec{x}) = \alpha_1 x_1^2 + \alpha_2 x_2^2 + ... + \alpha_n x_n^2$, то квадратичная форма записана в **каноническом виде**.
 - (a) Если $\alpha_i = \begin{cases} 0 \\ \pm 1 \end{cases}$, то квадратичная форма записана в **нормальном виде**.
 - (b) $A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$ матрица квадратичной формы $\phi(\vec{x})$ в каноническом базисе.
 - (c) **Любую** квадратичную форму можно привести к каноническому виду.

4.4.1 Методы приведения к каноническому виду:

- 1. Метод Лагранжа (выделение полных квадратов)
 - (a) $\phi(\vec{x}) = x_1^2 + 3x_2^2 4x_3^2 + 4x_1x_2 6x_1x_3$
 - i. Выберем квадрат какой-нибудь переменной и сгруппируем **все** слагаемые, содержащие эту переменную:

(b) Метод ортогональных преобразований

4.5 Закон инерции квадратичных форм

- 1. i_+ **положительный индекс инерции** квадратичной формы количество положительных коэффициентов в каноническом виде квадратичной формы.
- $2.\ i_-$ **отрицательный индекс инерции** квадратичной формы количество отрицательных коэффициентов в каноническом виде квадратичной формы.
- 3. r **ранг** количество ненулевых коэффициентов в каноническом виде квадратичной формы

4. Теорема (закон инерции квадратичных форм): Индексы инерции и ранг формы не зависят от способа приведения формы к каноническому виду.

4.6 Знакоопределенные квадратичные формы

- 1. Определения:
 - (a) Квадратичная форма $\phi(\vec{x})$ называется положительно определенной, если $\phi(\vec{x})>0, \, \forall \vec{x}\neq \vec{0}$
 - (b) Квадратичная форма $\phi(\vec{x})$ называется **отрицательно определенной**, если $\phi(\vec{x}) < 0, \, \forall \vec{x} \neq \vec{0}$
 - (с) Иначе: Форма общего вида
- 2. По каноническому виду:
 - (a) $i_+ = r = \dim V \Rightarrow$ положительно определена
 - (b) $i_{-} = r = \dim V \Rightarrow$ отрицательно определена

3. Критерий Сильвестра

- (а) Пусть:
 - і. V векторное пространство
 - іі. S базис
 - ііі. $\phi(\vec{x})$ квадратичная форма

iv.
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}$$
 - матрица квадратичной формы $\phi(\vec{x})$ в базисе S

- (b) Тогда:
 - і. Главные миноры матрицы A

A.
$$M_1 = a_{11}$$

B. $M_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$

- D. $M_n = det A$
- іі. Квадратичная форма $\phi(\vec{x})$ положительно определена тогда и только тогда, когда главные миноры ее матрицы A положительны.
- ііі. Следствие: Форма $\phi(\vec{x})$ отрицательно определена, когда главные миноры имею чередующиеся знаки, начиная с минуса.

(с) Пример:

i.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 5 \end{pmatrix}$$
, $\phi(\vec{x}) = x_1^2 + x_2^2 + 5x_3^2 + 4x_1x_2 + 6x_1x_3 + 2x_2x_3$

A.
$$M_1 = 1 > 0$$

B.
$$M_2 = 1 - 4 < 0$$

С. \Longrightarrow форма общего вида

ii.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 11 \end{pmatrix}$$

A.
$$M_1 = 1 > 0$$

B.
$$M_2 = 5 - 4 = 1 > 0$$

C.
$$M_3 = 6 - 2 - 3 = 1 > 0$$

D. \Longrightarrow форма положительно определена

4.7 Скалярное произведение

- 1. Определение: $(\vec{x}, \vec{y}) = |\vec{x}| |\vec{y}| \cos \phi$
- 2. Свойства:

(a)
$$(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$$

(b)
$$(\vec{x_1} + \vec{x_2}, \vec{y}) = (\vec{x_1}, \vec{y}) + (\vec{x_2}, \vec{y})$$

(c)
$$(\vec{x}, \vec{x}) > 0$$

3. Координатная форма:

(a)
$$(\vec{x}, \vec{y}) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

4. Длина и угол:

(a)
$$|\vec{x}| = \sqrt{(\vec{x}, \vec{x})} = \sqrt{x_1^2 + x_2^2 + x_3^2}$$

(b)
$$\cos \phi = \frac{(\vec{x}, \vec{y})}{|\vec{x}||\vec{y}|}$$

(c)
$$\vec{x} \perp \vec{y} \iff (\vec{x}, \vec{y}) = 0$$

- 5. Определение:
 - (а) Пусть:
 - і. V векторное пространство
 - іі. (\vec{x}, \vec{y}) числовая функция от двух векторных аргументов
 - (b) Тогда:

i. Эта функция называется **скалярным произведением**, если выполнены следующие свойства:

A.
$$(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$$

B.
$$(\vec{x_1} + \vec{x_2}, \vec{y}) = (\vec{x_1}, \vec{y}) + (\vec{x_2}, \vec{y})$$

C.
$$(\vec{x}, \vec{x}) > 0$$

- іі. Таким образом, **скалярное произведение** это симметричная билинейная форма, причем соответствующая квадратичная форма **положительно определена**.
- ііі. Векторное пространство V, в котором задано скалярное произведение, называется **евклидовым пространством**.

4.8 Матрица Грама

- 1. Пусть:
 - (a) $S = {\vec{e_1}, \vec{e_2}, \vec{e_3}}$ базис
 - (b) (\vec{x}, \vec{y}) скалярное произведение
- 2. Тогда:

(a)
$$g_{ij} = (\vec{e_i}, \vec{e_j})$$

(b)
$$G = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix}$$
 - матрица Грама скалярного произведения

(c)
$$(\vec{x}, \vec{y}) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} G \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \sum_{i,j=1}^3 g_{ij} x_i y_j$$

- 3. Критерии матрицы Грама:
 - (a) (\vec{x}, \vec{y}) симметрично $\Leftrightarrow G^T = G$
 - (b) $(\vec{x}, \vec{x}) > 0 \Leftrightarrow G$ удовлетворяет критерию Сильвестра
- 4. Определим понятие длины и угла в пространстве V:

(a)
$$|\vec{x}| = \sqrt{(\vec{x}, \vec{x})}$$

- і. Корректность определения длины следует из пункта 4 определения скалярного произведения.
- (b) $\cos \phi = \frac{(\vec{x}, \vec{y})}{|\vec{x}| |\vec{y}|}$
 - і. Следуя из неравенства Коши-Буняковского формула корректна.
- (c) \vec{x}, \vec{y} ортогональны $(\vec{x} \perp \vec{y})$, если $(\vec{x}, \vec{y}) = 0$

4.9 Неравенство Коши-Буняковского

- 1. $|(\vec{x}, \vec{y})| \le ||\vec{x}|| \cdot ||\vec{y}||$
- 2. Доказательство:

(a)
$$(\vec{x} + \lambda \vec{y}, \vec{x} + \lambda \vec{y}) = (\vec{x}, \vec{x}) + 2\lambda(\vec{x}, \vec{y}) + \lambda^2(\vec{y}, \vec{y}) \ge 0$$
 при $\forall \lambda$

(b)
$$D \le 0$$
: $D = 4(\vec{x}, \vec{y})^2 - 4(\vec{x}, \vec{x})(\vec{y}, \vec{y}) \le 0$

(c)
$$(\vec{x}, \vec{y})^2 \le ||\vec{x}||^2 ||\vec{y}||^2$$

(d)
$$|(\vec{x}, \vec{y})| \le ||\vec{x}|| \cdot ||\vec{y}||$$

3. Следствие (неравенство треугольника): $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$

Подготовка к контрольной работе

1. Дано:

(a)
$$S = {\vec{e_1}, \vec{e_2}}$$

(b)
$$G = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix}$$

(c)
$$\vec{x} = (1,1)_S, \ \vec{y} = (2,-1)_S$$

- 2. Найти длины базисных векторов и углы между ними
- 3. Решение:

(a)
$$||\vec{e_1}|| = \sqrt{(\vec{e_1}, \vec{e_1})} = \sqrt{g_{11}} = \sqrt{2}$$

(b)
$$||\vec{e_2}|| = \sqrt{(\vec{e_2}, \vec{e_2})} = \sqrt{g_{22}} = 2$$

(c)
$$\cos \phi = \frac{(\vec{e_2}, \vec{e_2})}{||\vec{e_1}|| \cdot ||\vec{e_2}||} = \frac{-1}{2\sqrt{2}}$$

(d)
$$\phi = \arccos(-\frac{1}{2\sqrt{2}})$$

(e)
$$(\vec{x}, \vec{x}) = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 4$$

(f)
$$||\vec{x}|| = \sqrt{4} = 2$$

(g)
$$(\vec{y}, \vec{y}) = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = 16$$

(h)
$$||\vec{y}|| = \sqrt{16} = 4$$

(i)
$$(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = -1$$

(j)
$$\cos \alpha = \frac{(\vec{x}, \vec{y})}{||\vec{x}|| \cdot ||\vec{y}||} = \frac{-1}{2 \cdot 4} = -\frac{1}{8}$$

Часть VI

Лекция 11 (18.05.15)

"Ортонормированный базис"

4.10 Пример

1. Дано:

(a)
$$G = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 5 \\ 0 & 5 & 12 \end{pmatrix}$$
 - матрица Грама в базисе S

(b)
$$\vec{x} = (1, 1, 0)$$

(c)
$$\vec{y} = (0, -2, 1)$$

2. Найти:

- (а) Длины базисных векторов и углы между ними
- (b) Длины векторов \vec{x} и \vec{y} и угол между ними

3. Решение:

(а) Длины базисных векторов:

i.
$$|\vec{e_1}| = \sqrt{(\vec{e_1}, \vec{e_1})} = \sqrt{2}$$

ii.
$$|\vec{e_2}| = \sqrt{(\vec{e_2}, \vec{e_2})} = \sqrt{3}$$

iii.
$$|\vec{e_3}| = \sqrt{(\vec{e_3}, \vec{e_3})} = 2\sqrt{3}$$

iv.
$$\alpha = \arccos(\frac{(\vec{e_1}, \vec{e_2})}{|\vec{e_1}||\vec{e_2}|}) = \arccos(\frac{-1}{\sqrt{2}\sqrt{3}}) = \arccos(-\frac{1}{\sqrt{6}})$$

v.
$$\beta = \arccos(\frac{(\vec{e_1}, \vec{e_3})}{|\vec{e_1}| |\vec{e_2}|}) = \arccos(0) = \frac{\pi}{2}$$

v.
$$\beta = \arccos\left(\frac{(\vec{e_1}, \vec{e_3})}{|\vec{e_1}||\vec{e_2}|}\right) = \arccos(0) = \frac{\pi}{2}$$

vi. $\gamma = \arccos\left(\frac{(\vec{e_2}, \vec{e_3})}{|\vec{e_2}||\vec{e_3}|}\right) = \arccos\left(\frac{5}{\sqrt{3} \cdot 2\sqrt{3}}\right) = \arccos\left(\frac{5}{6}\right)$

(b)
$$|\vec{x}| = \sqrt{(\vec{x}, \vec{x})}$$

(c)
$$(\vec{x}, \vec{x}) = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} G \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 3, |\vec{x}| = \sqrt{3}$$

(d)
$$|\vec{y}| = \sqrt{(\vec{y}, \vec{y})}$$

(e)
$$(\vec{y}, \vec{y}) = (0 \quad -2 \quad 1) G \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} = 4, |\vec{y}| = 2$$

(f)
$$\cos \phi = \frac{(\vec{x}, \vec{y})}{|\vec{x}||\vec{y}|}$$

(g)
$$(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} G \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} = 1$$

(h)
$$\cos \phi = \frac{1}{2\sqrt{3}}, \ \phi = \arccos(\frac{1}{2\sqrt{3}})$$

4.11 Ортонормированный базис

- 1. Пусть:
 - (a) V евклидово пространство
 - (b) $S = {\vec{e_1}, \vec{e_2}, ..., \vec{e_n}}$
- 2. Тогда:
 - (a) Если $\vec{e_i} \perp \vec{e_j}, i \neq j$, то S ортогональный базис

(b)
$$g_{ij} = (\vec{e_i}, \vec{e_j}) = \begin{cases} |\vec{e_i}|^2 & i = j \\ 0 & i \neq j \end{cases}$$

(c)
$$G = \begin{pmatrix} |\vec{e_1}|^2 & 0 & \dots & 0 \\ 0 & |\vec{e_2}|^2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & |\vec{e_n}|^2 \end{pmatrix}$$

(d)
$$(\vec{x}, \vec{y}) = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix} G \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} =$$

$$= |\vec{e_1}|^2 x_1 y_1 + \dots + |\vec{e_n}|^2 x_n y_n$$

(e) Если $ec{e_i} \perp ec{e_i}, i \neq j$ и $|ec{e_i}|^2 = 1$, то S - ортонормированный базис

(f)
$$g_{ij} = (\vec{e_i}, \vec{e_j}) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \Rightarrow G = E$$

(g)
$$(\vec{x}, \vec{y}) = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix} G \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

4.12 Алгоритм ортогонализации Грама-Шмидта

$$G = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$
 - матрица Грама в базисе $\{ec{e_1}, ec{e_2}\}$

1. Построим ортогональный базис:

(a)
$$\vec{f_1} = \vec{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

(b)
$$\vec{f_2} = \vec{e_2} + \alpha \vec{e_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

(c) Коэффициент α подберем таким образом, чтобы векторы $\vec{f_1}, \vec{f_2}$ были ортогональны

(d)
$$(\vec{f_1}, \vec{f_2}) = (1 \quad 0) \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} \alpha \\ 1 \end{pmatrix} = 2\alpha - 1 = 0, \ \alpha = \frac{1}{2}$$

(e) Проверка: $G' = P^T G P$

i.
$$G' = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{5}{2} \end{pmatrix} \Rightarrow \vec{f}_1 \perp \vec{f}_2$$
ii. $|\vec{f}_1| = \sqrt{2}, |\vec{f}_2| = \sqrt{\frac{5}{2}}$

2. Нормируем базис $\{\vec{f_1}, \vec{f_2}\}$

(a)
$$\vec{g_1} = \frac{\vec{f_1}}{|\vec{f_1}|} = \frac{\vec{f_1}}{\sqrt{2}} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

(b)
$$\vec{g_2} = \frac{\vec{f_2}}{|\vec{f_2}|} = \frac{\vec{f_2}}{\sqrt{\frac{5}{2}}} = \begin{pmatrix} \frac{\sqrt{2}}{2\sqrt{5}} \\ \frac{1}{2\sqrt{5}} \end{pmatrix}$$

(c) $\{\vec{g_1}, \vec{g_2}\}$ - ортонормированный базис

4.12.1 Пример для трехмерного пространства

$$G = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 5 \\ 0 & 5 & 12 \end{pmatrix}$$

1. Построим ортогональнгый базис

(a)
$$\vec{f_1} = \vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

(b)
$$\vec{f_2} = \vec{e_2} + \alpha \vec{e_1} = \begin{pmatrix} \alpha \\ 1 \\ 0 \end{pmatrix}$$

(c)
$$\vec{f}_1 \perp \vec{f}_2 \Leftrightarrow (\vec{f}_1, \vec{f}_2) = 0$$

(d)
$$(\vec{f_1}, \vec{f_2}) = (1 \quad 0 \quad 0) G \begin{pmatrix} \alpha \\ 1 \\ 0 \end{pmatrix} = 2\alpha - 1 = 0, \ \alpha = \frac{1}{2}$$

(e)
$$\vec{f_2} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}$$

(f)
$$\vec{f_3} = \vec{e_3} + \beta \vec{e_1} + \gamma \vec{e_2} = \begin{pmatrix} \beta \\ \gamma \\ 1 \end{pmatrix}$$

(g) Подберем коэффициенты β и γ таким образом, чтобы $\vec{f_3}$ был ортогонален $\vec{f_1}$ и $\vec{f_2}.$

(h)
$$\vec{f}_3 \perp \vec{f}_1 \Leftrightarrow (\vec{f}_1, \vec{f}_3) = 0$$

(i)
$$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} G \begin{pmatrix} \beta \\ \gamma \\ 1 \end{pmatrix} = 2\beta - \gamma = 0$$

(j)
$$\begin{pmatrix} \frac{1}{2} & 1 & 0 \end{pmatrix} G \begin{pmatrix} \beta \\ \gamma \\ 1 \end{pmatrix} = \frac{5}{2}\gamma + 5 = 0$$

(k)
$$\gamma = -2, \beta = -1$$

(l)
$$\vec{f}_3 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

(m) Проверка:
$$G' = P^T G P$$

i.
$$G' = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 5 \\ 0 & 5 & 12 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & \frac{5}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix} \Rightarrow \vec{f_1} \perp \vec{f_2} \perp \vec{f_3}$$

ii.
$$|\vec{f_1}| = \sqrt{2}$$

iii.
$$|\vec{f_2}| = \sqrt{\frac{5}{2}}$$

iv.
$$|\vec{f}_3| = \sqrt{2}$$

2. Нормируем базис:

(a)
$$\vec{g_1} = \frac{\vec{f_1}}{|\vec{f_1}|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}$$

(b)
$$\vec{g_2} = \frac{\vec{f_2}}{|\vec{f_2}|} = \begin{pmatrix} \frac{\sqrt{2}}{2\sqrt{5}} \\ \frac{\sqrt{2}}{\sqrt{5}} \\ 0 \end{pmatrix}$$

(c)
$$\vec{g_3} = \frac{\vec{f_3}}{|\vec{f_3}|} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\sqrt{2} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

4.12.2 Пример для трехмерного пространства (2 способ)

1.
$$(\vec{e_1}, \vec{e_3}) = 0 \Rightarrow \vec{e_1} \perp \vec{e_3}$$

2.
$$\vec{f_1} = \vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{f_2} = \vec{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

3.
$$\vec{f_3} = \vec{e_2} + \alpha \vec{e_1} + \beta \vec{e_3} = \begin{pmatrix} \alpha \\ 1 \\ \beta \end{pmatrix}$$

4.
$$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} G \begin{pmatrix} \alpha \\ 1 \\ \beta \end{pmatrix} = 2\alpha - 1 = 0, \ \alpha = \frac{1}{2}$$

5.
$$(0 \ 0 \ 1) G \begin{pmatrix} \alpha \\ 1 \\ \beta \end{pmatrix} = 5 + 12\beta = 0, \ \beta = -\frac{5}{12}$$

6.
$$\vec{f}_3 = \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{5}{12} \end{pmatrix}$$

7. Проверка: $G' = P^T G P$

(a)
$$G' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & 1 & -\frac{5}{12} \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 5 \\ 0 & 5 & 12 \end{pmatrix} \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 \\ 0 & 1 & -\frac{5}{12} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & \frac{5}{12} \end{pmatrix}$$

Образец контрольной работы 5

- 1. Дана квадратичная форма $\phi(\vec{x})$. Исследовать неопределенность с помощью критерия Сильвестра. Привести к каноническому виду. Выписать индексы инерции и ранг формы.
- 2. Дана матрица Грама G в базисе $\{\vec{e_1},\vec{e_2}\}$. Найти длины базисных векторов и угол между ними. Даны векторы \vec{x} и \vec{y} . Найти то же самое для них. Ортогонализовать базис $\vec{e_1},\vec{e_2}$.
- 3. Дана кривая. Привести уравнение кривой к каноническому виду, сделать чертеж. (аналог №4.3 из TP)

Часть VII

Лекция 12 (25.05.15)

"Ортогональные преобразования"

4.13 Ортогональные преобразования

1. Линейный оператор: $A' = P^{-1}AP$ Квадратичная форма: $A' = P^TAP$

- 2. P ортогональная матрица, если $P^T = P^{-1}$
- 3. Утверждение 1:
 - (а) Пусть:
 - і. V евклидово пространство

ii.
$$S_1 = \{\vec{e_1}, ..., \vec{e_n}\}$$

iii.
$$S_2 = \{\vec{f_1}, ..., \vec{f_n}\}$$

iv. S_1, S_2 - ортогональные базисы

- v. $P_{S_1 \to S_2}$ матрица перехода
- (b) Тогда: Матрица P ортогональная
- (с) Доказательство:

і.
$$\begin{cases} G_{S_1} = E \\ G_{S_2} = E \end{cases}$$
 , так как S_1, S_2 - ортонормированные базисы

ii.
$$G_{S_2} = P^T G_{S_1} P$$

iii.
$$E = P^T E P$$

iv.
$$P^TP = E \Longrightarrow P^T = P^{-1}$$

- 4. Утверждение 2:
 - (а) Пусть:
 - і. V векторное пространство
 - \hat{A} линейный оператор
 - ііі. A матрица линейного оператора в базисе S

iv.
$$A^T = A$$

- (b) Тогда: \hat{A} оператор простого типа (то есть из собственных векторов оператора \hat{A} можно составить базис пространства V)
- 5. Утверждение 3:
 - (а) Пусть:
 - і. V евклидово пространство
 - \hat{A} линейный оператор
 - ііі. \vec{x} собственный вектор, соответствующие λ_1
 - iv. \vec{y} собственный вектор, соответствующие λ_2

v.
$$\lambda_1 = \lambda_2$$

vi.
$$A^T = A$$

- (b) Тогда: $\vec{x} \perp \vec{y}$
- (с) Доказательство: самостоятельно

4.14 Алгоритм

$$\phi(\vec{x}) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1. Пусть:
 - (a) A матрица некоторого линейного оператора \hat{A} в ортонормированном базисе $\{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$.
- 2. Найдем собственные векторы и собственные значения линейного оператора \hat{A} и составим новый ортонормированный базис из собственных векторов.

(a)
$$|A - \lambda E| = 0$$

(b) $\begin{vmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 + 2 - 3(1 - \lambda) = 0$

(c)
$$-\lambda^3 + 3\lambda^2 - 3\lambda + 1 + 2 - 3 + 3\lambda = 0$$

$$(d) -\lambda^3 + 3\lambda^2 = 0$$

(e)
$$\lambda = 0$$
:

i.
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $rang = 1$
ii. $x_2 = a, x_3 = b, x_1 = -a - b$

ii.
$$x_2 = a$$
, $x_2 = b$, $x_1 = -a - b$

iii.
$$\vec{x} = \begin{pmatrix} -a - b \\ a \\ b \end{pmatrix} = a \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

(f)
$$\lambda = 3$$
:

i.
$$\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} -2 & 1 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix} \sim$$
$$\sim \begin{pmatrix} -2 & 1 & 1 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix}, rang = 2$$

ii.
$$\begin{cases} -2x_1 + x_2 + x_3 = 0 \\ -3x_2 + 3x_3 = 0 \end{cases}$$
iii.
$$\begin{cases} x_1 = a \\ x_2 = a \\ x_3 = a \end{cases}$$

iii.
$$\begin{cases} x_1 = a \\ x_2 = a \\ x_3 = a \end{cases}$$

iv.
$$\vec{x} = \begin{pmatrix} a \\ a \\ a \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

(g) Базис из собственных векторов:

i.
$$\vec{f_1} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
ii. $\vec{f_2} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$
iii. $\vec{f_3} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

3. Ортогонализуем векторы $\vec{f_1}, \vec{f_2}$

(a)
$$\vec{f_1}' = \vec{f_1} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

(b)
$$\vec{f_2}' = \vec{f_2} + \alpha \vec{f_1}$$

(c) Подбираем α так, чтобы векторы $\vec{f_1}, \vec{f_2}$ были ортогональны.

(d)
$$\vec{f_2}' = \begin{pmatrix} -1 - \alpha \\ \alpha \\ 1 \end{pmatrix}$$

(e)
$$(\vec{f_1}, \vec{f_2}') = \begin{pmatrix} -1 & 1 & 0 \end{pmatrix} G \begin{pmatrix} -1 - \alpha \\ \alpha \\ 1 \end{pmatrix}$$

(f) G=E, так как базис $\{\vec{e_1},\vec{e_2},\vec{e_3}\}$ ортонормированный

(g)
$$\alpha = -\frac{1}{2}$$

(h)
$$\vec{f_2}' = (-\frac{1}{2}, -\frac{1}{2}, 1)$$

(i) Ортогональный базис из собственных векторов:

i.
$$\vec{f_1}' = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

ii.
$$\vec{f_2}' = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

iii.
$$\vec{f_3}' = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

4. Нормируем ортобазис $\{\vec{f_1}',\vec{f_2}',\vec{f_3}'\}$

(a)
$$\vec{g_1}' = \frac{\vec{f_1}'}{|\vec{f_1}|} = (\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$$

(b)
$$\vec{g_2}' = \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{\sqrt{2}}{\sqrt{3}}\right)$$

(c)
$$\vec{g_3}' = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

5. В базисе $\{\vec{g_1}, \vec{g_2}, \vec{g_3}\}$:

(a) Матрица линейного оператора
$$A' = P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(b) Матрица квадратичной формы совпадает с матрицей линейного оператора: $A'' = P^T A P = P^{-1} A P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

(c) $\phi(\vec{x}) = 3x_3^2$ - канонический вид квадратичной формы

4.15Примеры:

1. $9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0$ Привести к каноническому виду ортогональным преобразованием. Сделать чертеж.

(a) Приведем квадратичную форму $\phi(\vec{x}) = 9x^2 - 4xy + 6y^2$ к каноническому виду с помощью ортогонального преобразования.

(b)
$$A = \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix}$$

(c)
$$\begin{vmatrix} 9 - \lambda & -2 \\ -2 & 6 - \lambda \end{vmatrix} = 0$$

(d)
$$\lambda = 5$$
:

i.
$$(A-5E)\vec{x} = \vec{0}$$

ii.
$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

ii.
$$(A-3E)x = 0$$
iii.
$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
iii.
$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 4 & -2 \\ 0 & 0 \end{pmatrix}, rang = 1$$
iv.
$$4x - 2a = 0, x = \frac{a}{2}, y = a$$

iv.
$$4x - 2a = 0$$
, $x = \frac{a}{2}$, $y = a$

v.
$$\vec{x} = a \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$$

(e)
$$\lambda = 10$$
:

i.
$$(A - 10E)\vec{x} = \vec{0}$$

ii.
$$\begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

iii.
$$\begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} \sim \begin{pmatrix} -1 & -2 \\ 0 & 0 \end{pmatrix}, rang = 1$$

iv.
$$x = -2a, \ y = a$$

v.
$$\vec{x} = a \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

(f) Базис из собственных векторов:

i.
$$\vec{e_1} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$$

ii. $\vec{e_2} = \begin{pmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$

(g) В базисе $\{\vec{e_1}, \vec{e_2}\}$:

i.
$$A' = \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix}$$

ii.
$$\phi(\vec{x}) = 5x_1^2 + 10y_1^2$$

(h) Преобразуем координаты:

i.
$$X' = P^{-1}X$$

ii.
$$X = PX'$$

ii.
$$X = PX'$$
iii. $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{x_1 - 2y_1}{\sqrt{5}} \\ -\frac{2x_1 + y_1}{\sqrt{5}} \end{pmatrix}$

iv.
$$l(x) = \frac{-40y_1}{\sqrt{5}}$$

(і) Подстановка:

i.
$$5x_1^2 + 10y_2^1 - \frac{40y_1}{\sqrt{5}} - 2 = 0$$

i.
$$5x_1^2+10y_2^1-\frac{40y_1}{\sqrt{5}}-2=0$$
ii. $5x_1^2+10(y_1^2-\frac{4y_1}{\sqrt{5}}+\frac{4}{5})-\frac{40}{5}-2=0$
iii. $\frac{x_1^2}{2}+\frac{(y_1-\frac{2}{\sqrt{5}})^2}{1}=1$ - эллипс

ііі.
$$\frac{x_1^2}{2} + \frac{(y_1 - \frac{2}{\sqrt{5}})^2}{1} = 1$$
 - эллипо

Часть VIII

Консультация (26.06.15)

- 1. Зачтенная тема дает один плюс к теме на экзамене, но задачи может быть две. Зачеркивается любая задача на выбор.
- 2. Оценивание:
 - (a) 5 баллов + теория "**3**"
 - (b) От 8 баллов "5"
- 3. Время на решение: 90 минут